
5.请你根据前面的探究,总结本文的论证思路。明确:作者首先通过论述作者、读者以及文字之间的联系来明确读者欣赏文艺作品的本质,即“接触作者的所见所感”,然后以赏析王维诗句为例,从正反两个角度论述了驱遣想象力的重要作用。目标导学三:赏析语言,领悟内涵文中有许多句子,都有十分深刻的文艺观,它们或有十分深刻的内蕴,或有写作值得借鉴的实用价值,请阅读下面几句,谈谈你对它们的理解。(1)文艺的创作决不是随便取许多文字来集合在一起。明确:任何一篇文艺作品,都是文字集合起来的,但这是一种有着内在逻辑顺序的结合,具有文本表现中的一般技法,既表现了内容也传递着作者的思想感情。因此,这样的文章绝不可能随意拼凑,须由作者有意识、有目的、有逻辑地创造,而在完成时又符合自然的特点。(2)作者着手创作,必然对于人生先有所见,先有所感。

2.作者要说的是山水画的意境,为什么要在第一部分大篇幅分析诗歌的意境。明确:按照作者的观点,“孤帆远影碧空尽,唯见长江天际流”两句,完全描写自然的景色,然而就在这两句里,使人深深体会到诗人与朋友的深厚友情。描写自然的景色与绘出景色无异,且作者提到“意境就是景与情的结合”,可见诗歌中的意境与山水画的意境是相通的,并无二致。因此,作者在这里以已经学习过的诗歌意境为例,也就能更好地诠释山水画的意境。3.“意境的产生,有赖于思想感情,而思想感情的产生,又与对客观事物认识的深度有关。”作者是如何论述此观点的?你认为这个观点正确吗,请结合你的个人经历做简要说明。明确:作者以齐白石画虾为例来论证了他的观点。这个观点正确,如我们知道松树的耐寒可以象征它的坚忍,而当我们在雪地里认真观察,会发现只有松树傲然长青,松针贯穿积雪依然向上,此刻,我们会真正感受到这种坚忍的品质是那样真实。

目标导学三:深入理解,体会“无言之美”1.请你结合作者的任意一则论据,说说你对“无言之美”的感受。明确:正如作者探讨文学作品时的数个例子,诗歌本是极其简短的几句话,但是其包含的意境却是极其宽广的。如“大漠孤烟直,长河落日圆”,言语只有短短的十个字,但是读来却似看见大漠的宽阔宏伟之景,悲凉之意,予人以悲凉雄壮的美感。然而,作者要描写出这宽阔宏伟之景,悲凉之意,恐怕书万言都难以说尽,这不是意味着作者将它们寓于无言之中了吗?这就是古典文学中深蕴的无言之美。2.拓展延伸:品味下面一段话,说说你品味到“无言之美”的例子。拿美术来表现思想和情感,与其尽量流露,不如稍有含蓄;与其吐肚子把一切都说出来,不如留一大部分让欣赏者自己去领会。因为在欣赏者的头脑里所产生的印象和美感,有含蓄比较尽量流露的还要更加深刻。

一、导入新课唐太宗说:“以铜为镜,可以正衣冠;以古为镜,可以知兴替;以人为镜,可以明得失。”历代君主若想成就一番霸业,身边没有几位敢进谏言的大臣是不成的;而劝谏能否奏效,一要看作君王的是否贤明,二要看谏者是否注意了进谏的艺术,使“良药”既“爽于口”,又“利于病”。战国时齐威王非常幸运地遇到了这样一位贤臣——邹忌。而这位以雄辩著称的谋臣的讽谏之法更是令人叫绝。今天,我们就来欣赏选自《战国策》的历史散文《邹忌讽齐王纳谏》。二、教学新课目标导学一:认识作品,了解相关文学常识《战国策》:一部国别体史学著作,又称《国策》。书中主要记载的是战国时策士们的政治主张和言行策略,所以传到西汉末时,由刘向整理校正后定名为《战国策》。它是先秦历史散文中的一枝奇葩,对后世史学和文学的影响极为深远。

你能不能用你的本领把这山村美景表达出来呢? 老师请画画的小朋友在这花丛里,写诗的在小山坡上……….. 四、完美结课: 小朋友玩的高兴吗?好我们一起回家啦!(播放《郊游》)。 教学反思: 启发学生“你都想到了什么?”从而让学生展开丰富的想象,经过教师的简单小结使学生了解了牧童的生活和放牧时的心情,为学唱歌曲《放牛歌》做情感铺垫。 接下来的“体验理解”环节还是以激发学生兴趣为主,从猜小牧童的“宝贝”(笛子)模仿小牧童吹笛子的动作,到学吹笛子的有节奏的嘀嘀声XXXXXX,到有节奏的模仿小黄牛的叫声X-,我都是在让学生从间奏入手的,目的:一是引导学生会听音乐,能听出哪是间奏;二是让学生充分感受歌曲的旋律,熟悉歌曲;三是培养学生[此文转于斐斐课件园 FFKJ.Net]节奏感,知道笛声和小黄牛的叫声表示的节奏是什么,对两个声部的节奏训练进行一次渗透和尝试。

一、说教材《我多想去看看》是一年级下册中的一首诗歌。诗歌用第一人称的手法,以一个山村孩子的口吻,通过“我”和妈妈的对话,讲自己非常想到遥远的北京城,去看天安门广场的升旗仪式。语言朴实、感情真挚,抒发了少年儿童向往北京的强烈思想感情。通过本课的教学激发学生对北京和祖国的热爱之情。二、析学情低年级学生对首都北京有一种天然的向往之情,教学中要点燃这种激情,巧妙利用,引导学生想象首都北京,在朗诵中感受北京。由浅入深,不断提高。鉴于大部分学生没有亲自去过北京,要充分借助多媒体教学让学生直观感受北京的风光,看一看,想一想,说一说,为情感的激发创造条件。

(一), 起重伤害事故 1,指从事起重作业时引起的机械伤害事故。起重作业包括:桥式起重机、龙门起重机、门座起重机、搭式起重机、悬臂起重机、桅杆起重机、铁路起重机、汽车吊、电动葫芦、千斤顶等作业。如:起重作业时,脱钩砸人,钢丝绳断裂抽人,移动吊物撞人,钢丝绳刮人,滑车碰人等伤害。包括起重机械在使用和安装过程中的倾翻事故及提升设备过卷等事故。

二、说教学目标 根据本教材的结构和内容分析,结合××年级学生的认知结构及其心理特征,我制定了以下的教学目标:1.知识与技能目标:××。2.过程与方法目标:××。3.情感态度与价值观目标:××。 三、说教学的重、难点 本着××新课程标准,在吃透教材基础上,我确定了以下的教学重点和难点。1.教学重点:××。 重点的依据:只有掌握了××,才能理解和掌握××。2.教学难点:××。 难点的依据:××较抽象;学生没有这方面的基础知识。 为了讲清教材的重、难点,使学生能够达到本框题设定的教学目标,我再从教法和学法上谈谈。

活动目标是教育活动的起点和归宿,对活动起着导向作用,根据中班幼儿年龄特征和认知水平,结合所选教材内容,我制定了本次活动的目标为:1.通过画面理解儿歌内容,念唱儿歌,感受春节看花灯的热闹场景。2.愿意主动在集体面前朗诵,声音响亮。重点和难点:一个活动当中最能体现活动目标的部分便是活动的重点部分,如果抓住重点就能使整个活动的进程有的放矢,并且合理安排活动时间及顺序。本次活动的重点也是活动的难点:通过画面理解儿歌内容,念唱儿歌,感受春节看花灯的热闹场景。

2.过程与方法 通过实践操作、猜想验证、合作探究,经历发现“三角形任意两边的和大于第三边”这一性质的活动过程,发展空间观念,培养逻辑思维能力,体验“做数学”的成功。3.情感态度与价值观 (1)发现生活中的数学美,会从美观和实用的角度解决生活中的数学问题。 (2)学会从全面、周到的角度考虑问题。 【教学重点】 理解、掌握“三角形任意两边之和大于第三边”的性质;理解两点间的距离的含义。【教学难点】 引导探索三角形的边的关系,并发现“三角形任意两边的和大于第三边”的性质。【教学方法】启发式教学、自主探索、合作交流、讨论法、讲解法。【课前准备】多媒体、学具袋【课时安排】 1课时【教学过程】(一)复习导入 师:什么样的图形叫三角形?生交流:由3条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。

练习:现在你能解答课本85页的习题3.1第6题吗?有一个班的同学去划船,他们算了一下,如果增加一条船,正好每条船坐6人,如果送还了一条船 ,正好每条船坐9人,问这个班共多少同学?小结提问:1、今天你又学会了解方程的哪些方法?有哪些步聚?每一步的依据是什么?2、现在你能回答前面提到的古老的代数书中的“对消”与“还原”是什么意思吗?3、今天讨论的问题中的相等关系又有何共同特点?学生思考后回答、整理:① 解方程的步骤及依据分别是:移项(等式的性质1)合并(分配律)系数化为1(等式的性质2)表示同一量的两个不同式子相等作业:1、 必做题:课本习题2、 选做题:将一块长、宽、高分别为4厘米、2厘米、3厘米的长方体橡皮泥捏成一个底面半径为2厘米的圆柱,它的高是多少?(精确到0.1厘米)

(3)移项得-4x=4+8,合并同类项得-4x=12,系数化成1得x=-3;(4)移项得1.3x+0.5x=0.7+6.5,合并同类项得1.8x=7.2,系数化成1得x=4.方法总结:将所有含未知数的项移到方程的左边,常数项移到方程的右边,然后合并同类项,最后将未知数的系数化为1.特别注意移项要变号.探究点三:列一元一次方程解应用题把一批图书分给七年级某班的同学阅读,若每人分3本,则剩余20本,若每人分4本,则缺25本,这个班有多少学生?解析:根据实际书的数量可得相应的等量关系:3×学生数量+20=4×学生数量-25,把相关数值代入即可求解.解:设这个班有x个学生,根据题意得3x+20=4x-25,移项得3x-4x=-25-20,合并同类项得-x=-45,系数化成1得x=45.答:这个班有45人.方法总结:列方程解应用题时,应抓住题目中的“相等”、“谁比谁多多少”等表示数量关系的词语,以便从中找出合适的等量关系列方程.

方法总结:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程再求解.探究点三:工程问题一个道路工程,甲队单独施工9天完成,乙队单独做24天完成.现在甲乙两队共同施工3天,因甲另有任务,剩下的工程由乙队完成,问乙队还需几天才能完成?解析:首先设乙队还需x天才能完成,由题意可得等量关系:甲队干三天的工作量+乙队干(x+3)天的工作量=1,根据等量关系列出方程,求解即可.解:设乙队还需x天才能完成,由题意得:19×3+124(3+x)=1,解得:x=13.答:乙队还需13天才能完成.方法总结:找到等量关系是解决问题的关键.本题主要考查的等量关系为:工作效率×工作时间=工作总量,当题中没有一些必须的量时,为了简便,应设其为1.三、板书设计“希望工程”义演题目特点:未知数一般有两个,等量关系也有两个解题思路:利用其中一个等量关系设未知数,利用另一个等量关系列方程

解:设截取圆钢的长度为xmm.根据题意,得π(902)2x=131×131×81,解方程,得x=686.44π.答:截取圆钢的长度为686.44πmm.方法总结:圆钢由圆柱形变成了长方体,形状发生了变化,但是体积保持不变.“变形之前圆钢的体积=变形之后长方体的体积”就是我们所要寻找的等量关系.探究点三:面积变化问题将一个长、宽、高分别为15cm、12cm和8cm的长方体钢坯锻造成一个底面是边长为12cm的正方形的长方体钢坯.试问:是锻造前的长方体钢坯的表面积大,还是锻造后的长方体钢坯的表面积大?请你计算比较.解析:由锻造前后两长方体钢坯体积相等,可求出锻造后长方体钢坯的高.再计算锻造前后两长方体钢坯的表面积,最后比较大小即可.解析:设锻造后长方体的高为xcm,依题意,得15×12×8=12×12x.解得x=10.锻造前长方体钢坯的表面积为2×(15×12+15×8+12×8)=2×(180+120+96)=792(cm2),锻造后长方体钢坯的表面积为2×(12×12+12×10+12×10)=2×(144+120+120)=768(cm2).

提示:要学会在图表中用含未知数的代数式表示出要分析的量;然后利用相等关系列方程。2.Flash动画,情景再现.3.学法小结:(1)对较复杂的问题可以通过列表格的方法理清题中的未知量、已知量以及等量关系,这样,条理比较清楚.(2)借助方程组解决实际问题.设计意图:生动的情景引入,意在激发学生的学习兴趣;利用图表帮助分析使条理清楚,降低思维难度,并使列方程解决问题的过程更加清晰;学法小结,着重强调分析方法,养成归纳小结的良好习惯。实际效果:动画引入,使数字问题变的更有趣,确实有效地激发了学生的兴趣,学生参与热情很高;借助图表分析,有效地克服了难点,学生基本都能借助图表分析,在老师的引导下列出方程组。4.变式训练师生共同研究下题:有一个三位数,现将最左边的数字移到最右边,则比原来的数小45;又知百位数字的9倍比由十位数字和个位数字组成的两位数小3,试求原来的3位数.

(2)∵点G是BC的中点,BC=12,∴BG=CG=12BC=6.∵四边形AGCD是平行四边形,DC=10,AG=DC=10,在Rt△ABG中,根据勾股定理得AB=8,∴四边形AGCD的面积为6×8=48.方法总结:本题考查了平行四边形的判定和性质,勾股定理,平行四边形的面积,掌握定理是解题的关键.三、板书设计1.平行四边形的判定定理3:对角线互相平分的四边形是平行四边形;2.平行线的距离;如果两条直线互相平行,则其中一条直线上任意一点到另一条直线的距离都相等,这个距离称为平行线之间的距离.3.平行四边形判定和性质的综合.本节课的教学主要通过分组讨论、操作探究以及合作交流等方式来进行,在探究两条平行线间的距离时,要让学生进行合作交流.在解决有关平行四边形的问题时,要根据其判定和性质综合考虑,培养学生的逻辑思维能力.

5.一件上衣原价每件500元,第一次降价后,销售甚慢,第二次大幅度降价的百分率是第一次的2 倍,结果以每件240元的价格迅速出售,求每次降价的百分率是多少?6.水果店花1500元进了一批水果,按50%的利润定价,无人购买.决定打折出售,但仍无人购买,结果又一次打折后才售完.经结算,这批水果共盈利500元.若两次打折相同,每次打了几折?(精确到0.1折)7.某服装厂为学校艺术团生产一批演出服,总成本3000元,售价每套30元.有24名家庭贫困学生免费供应.经核算,这24套演出服的成本正好是原定生产这批演出服的利润.这批演出服共生产了多少套?8、某商店经营T恤衫,已知成批购进时单价是2.5元。根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售200件。请你帮助分析,销售单价是多少时 ,可以获利9100元?

探究点二:用配方法解二次项系数为1的一元二次方程用配方法解方程:x2+2x-1=0.解析:方程左边不是一个完全平方式,需将左边配方.解:移项,得x2+2x=1.配方,得x2+2x+(22)2=1+(22)2,即(x+1)2=2.开平方,得x+1=±2.解得x1=2-1,x2=-2-1.方法总结:用配方法解一元二次方程时,应按照步骤严格进行,以免出错.配方添加时,记住方程左右两边同时加上一次项系数一半的平方.三、板书设计用配方法解简单的一元二次方程:1.直接开平方法:形如(x+m)2=n(n≥0)用直接开平方法解.2.用配方法解一元二次方程的基本思路是将方程转化为(x+m)2=n(n≥0)的形式,再用直接开平方法,便可求出它的根.3.用配方法解二次项系数为1的一元二次方程的一般步骤:(1)移项,把方程的常数项移到方程的右边,使方程的左边只含二次项和一次项;(2)配方,方程两边都加上一次项系数一半的平方,把原方程化为(x+m)2=n(n≥0)的形式;(3)用直接开平方法求出它的解.

三、课后自测:1、如图,A、B、C、D为矩形的四个顶点,AB=16cm,BC= 6cm,动点P、 Q分别从点A、C出发,点P以3cm/s的速度向点B移动,一直到达B为止;点Q以2cm/s的速度向点D移动。经过多长时间P、Q两点之间的距离是10cm?2、如图,在Rt △ABC中,AB=BC=12cm,点D从点A开始沿边AB以2cm/s的速度向点B移动,移 动过程中始终保持DE∥BC,DF∥AC,问点D出发几秒后四边形DFCE的面积为20cm2?3、如图所示,人民海关缉私巡逻艇在东海海域执行巡逻任务时,发现在其所处的位置 O点的正北方向10海里外的A点有一涉嫌走私船只正以24海里/时的速度向正东方向航行,为迅速实施检查,巡逻艇调整好航向,以26海里/时的速度追赶。在涉嫌船只不改变航向和航速的前提下,问需要几小时才 能追上( 点B为追上时的位置)?

【学习目标】1 、学习过程与方法:因式分解法是把一个一元二次方程化为两个一元一次方程来解,体现了一种“降次”思想、“转化”思想,并了解这种转化思想在解方程中的应用。2、学习重点 :用因式分解法解某些方程。 【温故】1、(1)将一个多项式(特别是二次三项式)因式分解,有哪几种分解方法?(2)将下列多项式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自学课本 P46----P48[讨论]以上解方程的方法是如何使二次方程降为一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。