2.反复诵读,体验感悟(1)学生选择喜欢的语段自由诵读。(2)小组内互相听读,分享体悟和收获:激荡的生命、磅礴的力量与阳刚之美……结束语:作者笔下,多短句,简洁有力、脆生响亮;多排比,既有句内的排比,又有句子之间、段落之间的排比,还能连段而下,交错互出;即使不单独直接描写腰鼓释放的磅礴能量,也从人的感觉、人的联想和群山、大地等周围环境的回响上,多方位地渲染着它的奇特效应;自始至终采用行进的、动态的描写,使人的动作与腰鼓的声响,在共时态中互激互融,合而为一,从艺术上组成一个表现着生命之源和力量之泉的整体。这一切形式上的追求,在文章中造成了一种快速跃动的节奏、炽热灼人的氛围、排山倒海般的气势,恰与作者所要歌之颂之的人的生命力量相辅相契。这感染力不仅源自安塞腰鼓本身的艺术风采,更是作者综合运用各种修辞、技巧表达出的文字魅力!
庄子是战国时期著名的思想家、哲学家和文学家。他是道家学派主要代表人物之一,他继承并发展了老子的思想,与老子并称“老庄”。《庄子》又名《南华经》,是道家经典著作之一。《庄子》主要反映了庄子的批判哲学、美学等,其内容丰富,博大精深,涉及哲学、人生、政治、社会、艺术、宇宙生成论等诸多方面。《庄子》是一部文学的典范著作。“道”是庄子思想的核心,“逍遥游”是庄子不满黑暗现实的羁绊而提出的一种生活方式与社会理想。庄子主张超然物外,绝对自由地生活在世界上,他认为生命的意义不在于庸俗地活着,而在于逍遥地神游,这些精神的遨游是绝对自由的,在庄子看来,自然是一种超凡脱俗的状态,一种妙不可言的境界。庄子的“逍遥游”是一种感性的生活方式,他告诉我们要去追求功利之外独立的生命价值,追求人生的真实自我。从当下来看,庄子追求的逍遥境界,是无法实现的主观唯心主义幻想,是一种乌托邦式的美好的臆想。
(2)化用古诗文:“雪夜驰马,荒郊店宿,每每令人忘路之远近。”(化用陶渊明《桃花源记》中的“忘路之远近”)“最壮的是塞外点兵,吹角连营,夜深星阑时候,将军在挑灯看剑……”(化用辛弃疾的《破阵子·为陈同甫赋壮词以寄之》中的“醉里挑灯看剑,梦回吹角连营。八百里分麾下炙,五十弦翻塞外声,沙场秋点兵”)点拨:吴伯箫认为美文是“诗与散文中间的桥”。他早期的文章善于神思飞接今古,挟着传统文赋的神韵,有着强化历史的厚重感和文化意蕴。语言精美,诗意深沉。结束语:吴伯箫的文章很少直抒胸臆,大多采用叙事、抒情、描写、议论融为一体的手法,陈情于事、寓景以情,以散文的笔法行文,自由随意。本文从多方面选材,以灯笼为线索,以小见大,语言自然朴素、清新练达,既朴实平易又生动传神,娓娓而谈,侃侃而论,由生活经历和思亲念乡的个人情感升华为家国情怀,有着无穷的艺术魅力,是我们学写散文的典范。
《核舟记》是一篇说明性质的文言文,作者在完整而深刻地理解雕刻艺术构思的基础上,合理安排材料,运用简练生动的文字再现了“核舟”的形象。本课教学设计,注重学生自主学习、自主探究、自主拓展,教师予以有效指导。教学中的各个环节环环相扣,思路清晰。在自主学习的过程中,掌握文章的基本内容;在合作学习的过程中,完成文言知识卡片的归纳整理;在探究学习的过程中,通过“找一找”“品一品”两个环节,让学生深入到文本中进行赏析,感知核舟的奇巧,感悟雕刻者技艺的精巧和构思的精妙,学习作者行文的巧妙,体会到文章语言的简洁、准确和生动;在布置作业环节,联系课堂内外,有拓展延伸的阅读,有学以致用的练笔。整个教学设计适应了学生各种能力的发展需要,提高了学生的语文素养。疑难探究《核舟记》一般被视为说明文,但文中包含了大量的描写。对此应该如何理解?首先,说明文是今天我们按照记叙文、说明文、议论文三大文体分类为之做出的界定,而古人的文体分类中并无“说明文”一类,《核舟记》这种记物之文和记游、记亭台楼阁之文都属于“杂记”。
本环节通过引导学生分析诗中富有地方色彩的词句和比兴、拟人、夸张等修辞手法运用的效果,并归纳出本诗与“信天游”的异同,让学生去发现本诗的“生活气息和乡土美感”。三、总结存储1.教师小结《回延安》采用了“信天游”形式,运用了多种修辞手法,读起来让人激情澎湃。诗人以赤子之心歌颂了养育一代革命者的延安精神,从中我们感受到了诗人跳动着的脉搏——对“母亲”延安的那份永不泯灭的真情。全诗除了真切的情感构成了诗的辐射源外,诗人对陕北风土人情的意象组合描写,更增添了作品的生活气息和乡土美感。2.布置作业(1)完成教材P15“积累拓展”六。(2)记录家乡的特色并仿写。“百里不同风,千里不同俗”,你的家乡有怎样的文化特色?问问你的祖辈、父辈,试搜集、记录几个具有家乡地方特色的语言、民俗、景或物的例子,并尝试运用这些富有地方特色的内容写几行诗表达对家乡、对家人的情感。
(2)英国女士提出要见钱锺书,钱锺书既没有直接同意,也没有一口回绝,而是运用“类比法”,将自己的作品《围城》比作一个不错的“鸡蛋”,将自己比作下那个蛋的“母鸡”,用幽默的自嘲回绝了对方见面的请求,有礼有度,表现了大作家的聪明机智。(3)好的应对是依据语境,快速调动思维,迅速做出反应,做到随机应变、巧妙应对。案例中,年轻画家没有意识到自己画画的能力不够强,只是一味地抱怨画不好卖。门采尔快速调动思维,随机应变,变换了对方话语中的部分词语的语序,就巧妙地回答了年轻画家的问题,既给年轻画家点明了画卖得慢的原因,又指导了他该怎么做。师小结:在沟通与交流的过程中难免产生碰撞和冲突,如何让别人心服口服,话怎么讲才能让人听进去,这是值得我们思考与学习的。2.布置作业(1)任选一题完成:①找一个自己应对失败的例子,重新设计应对的语言。 如:好朋友想约你去网吧打游戏,你怎么应对?
预设 不知走了多久,就在身心俱疲之际,眼前忽然出现一片仙境。清澈的溪流蜿蜒流动,与溪石相撞,发出清脆的声响。沿着溪流走上几百步,两岸仍是一片片茂密的桃花林,晴空下,桃枝交错,纷纷扰扰;桃花缤纷迷离,似红云,似粉霞。而桃林地面上则青草葱茏,就连路过的清风也沾上桃香,惹下了一场桃花雨。只见那些花瓣调皮地在空中起舞,最后或落在岸上,与青草私语,或落于溪中,随流水旅行……设问2:看到这样一片美丽而又奇特的桃花林,渔人又有什么感受呢?预设 “忽逢”一词体现了渔人的惊喜之情。“渔人甚异之,复前行,欲穷其林”,体现了渔人十分好奇,急切地想探寻桃花林的心理。(2)在朗读中感受美。(教师指导学生在朗读中感受桃林之美和渔人之惊喜。)朗读指导:“忽逢”要读出惊喜,速度稍快,“数百步”三字要强调重读,以体现桃林的范围之广。“中无杂树,芳草鲜美,落英缤纷”要以“二二”的节奏断开,但前后之间要语气贯连,读得似断实连,语速要稍慢,将一幅幅画面徐徐呈现出来,就像放电影一般,以体现渔人此刻的痴迷沉醉之情。
师小结:看社戏是主要内容,因此看社戏前后的波折,夜航去看戏途中,戏后归航偷豆等情节详写;其他情节与看社戏关系不大,因此略写。设问2:结合文章内容,说说作者为什么要详写去看社戏前的波折。预设 首先,这本身就属于看社戏全过程的内容;同时,波折中反映了“我”对看戏的渴望,反映了亲人、朋友对“我”的关心、帮助,表现出平桥村于“我”确实是一片“乐土”;再者,写波折也是为写看戏做铺垫,使课文内容曲折而充满生活情趣。设问3:略写的平桥概况、乡间生活两部分有什么作用?预设 从内容上来看:交代看社戏的时间、地点、人物;是中心事件的环境和机缘。从结构上来看:为下文和小伙伴去赵庄看戏做铺垫,钓虾、放牛已是乐趣甚浓,“第一盼望”的看戏自然更是乐趣无穷,吸引读者细读看戏部分;与结尾句遥相呼应。从情感上来看:表达对平桥村的热爱、怀念。师小结:本文围绕主要事件“看社戏”,从想看戏不得,到能看戏而不愿看,从沮丧返航再到途中偷豆,情节曲折,摇曳多姿,其间欲扬先抑,山穷水尽而又柳暗花明。
四、总结归纳,延伸拓展师:作者“观古今于须臾,抚四海于一瞬”,把时间的概念,从人们日常的感觉延伸到自然界中,引出了关于时间的又一种境界。请同学们根据你所知道的课内外知识,完成下面的拓展任务:拓展任务一岩石记录时间的重要方式是它保存了许多的历史痕迹。请阅读课文第22—29段并分组讨论,说说岩石保存了哪些历史痕迹,它对人类有着怎样的意义,你从中得到了哪些启示。 (生分小组探讨,批注,然后交流回答)预设 示例:①记录了地壳的活动;②记录了气候的变化;③记录了古代生物的状况;④记录了地球历史的发展过程;⑤记录了自然界某些转瞬即逝的活动。意义与启示:对岩石的研究,不仅使我们增长了知识,对自然界与史前历史有了更多的认识,还使我们拥有了开发史前资源的可能性,能为人类谋取幸福。我们要秉承这种辩证主义思想观念,发扬科学探索的精神,在人类前行的历史上,贡献出一份力量。
阿伦.科普兰是美国现代音乐的倡导者,1920年创作的《猫和老鼠》是一首音乐形象鲜明,诙谐有趣的钢琴演奏曲。乐曲栩栩如生的表现了猫捉老鼠的情景,不协和和弦以及多变的节奏,使作品充满了现代的气息。乐曲由引子、A、B、A、尾声组成。引子中速猫的主题。猫骄傲的懒洋洋的走向高处,凶险的目光窥视周围。第一乐段开始速度非常快,刻画了老鼠的形象。接着猫在屋子里冷漠的巡视,老鼠灵巧的跑来跑去,一场猫捉老鼠的游戏开始了。第二乐段老鼠得意的逃掉了,它,轻快的跑上跑下。远处传来教堂钟声的回响。猫懒洋洋的自我陶醉,老鼠见状,极其灵巧的故意挑逗猫。第三乐段猫再次扑向老鼠,这次老鼠终于被猫逮着了。美声慢板送葬去曲,装死的老鼠一瘸一拐的拖着残腿悄悄的溜走了。在这部作品中作曲家运用了自己独特的“跃进式”旋律,紧张不安的活跃节奏,快速的托卡塔(密集)音型、丰富的和声运用朴实清晰的色彩和富于广度和深度的想象力。让人仿佛看到猫和老鼠追逐、争斗的情形。
伴随着寒假生活的结束,新的一年又开始了。回忆你的假期,你是否有值得回味的事情和经历呢?我想,不同的人肯定有不同的收获和感受。有的同学“收获”了胡吃海睡;而有的同学选择了认真完成寒假作业之余适当的放松;有的同学选择了一本好书,与心灵对话,让自己的精神旅行;有的同学利用丰富的网络资源来丰富自己的头脑,实现弯道超越。今天,我们又重返校园,在一个充满希望的早晨,怀着感恩的心情,庄严地注视着五星红旗冉冉升起,感谢伟大的祖国为我们提供了和平和富足,才使我们有了安心读书、幸福生活的环境。因为感恩才会有这庄严的时刻,因为感恩我们此时才会如此的肃穆!我们第六小学在沈玥校长“打造精小亮点,彰显个性魅力”理念引领下,整整八年,感恩教育贯穿学校工作始末,浓郁的“孝德”文化氛围已逐步形成。在这里,孝道和感恩充分融合。
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 1.2正弦型函数. *创设情境 兴趣导入 与正弦函数图像的做法类似,可以用“五点法”作出正弦型函数的图像.正弦型函数的图像叫做正弦型曲线. 介绍 播放 课件 质疑 了解 观看 课件 思考 学生自然的走向知识点 0 5*巩固知识 典型例题 例3 作出函数在一个周期内的简图. 分析 函数与函数的周期都是,最大值都是2,最小值都是-2. 解 为求出图像上五个关键点的横坐标,分别令,,,,,求出对应的值与函数的值,列表1-1如下: 表 001000200 以表中每组的值为坐标,描出对应五个关键点(,0)、(,2)、(,0)、(,?2)、(,0).用光滑的曲线联结各点,得到函数在一个周期内的图像(如图). 图 引领 讲解 说明 引领 观察 思考 主动 求解 观察 通过 例题 进一 步领 会 注意 观察 学生 是否 理解 知识 点 15
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 1.3正弦定理与余弦定理. *创设情境 兴趣导入 在实际问题中,经常需要计算高度、长度、距离和角的大小,这类问题中有许多与三角形有关,可以归结为解三角形问题,经常需要应用正弦定理或余弦定理. 介绍 播放 课件 了解 观看 课件 学生自然的走向知识点 0 5*巩固知识 典型例题 例6一艘船以每小时36海里的速度向正北方向航行(如图1-14).在A处观察灯塔C在船的北偏东30°,0.5小时后船行驶到B处,再观察灯塔C在船的北偏东45°,求B处和灯塔C的距离(精确到0.1海里). 解 因为∠NBC=45°,A=30°,所以C=15°, AB = 36×0.5 = 18 (海里). 由正弦定理得 答:B处离灯塔约为34.8海里. 例7 修筑道路需挖掘隧道,在山的两侧是隧道口A和B(图1-15),在平地上选择适合测量的点C,如果C=60°,AB = 350m,BC = 450m,试计算隧道AB的长度(精确到1m). 解 在△ABC中,由余弦定理知 =167500. 所以AB≈409m. 答:隧道AB的长度约为409m. 图1-15 引领 讲解 说明 引领 观察 思考 主动 求解 观察 通过 例题 进一 步领 会 注意 观察 学生 是否 理解 知识 点 40
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 3.1 排列与组合. *创设情境 兴趣导入 基础模块中,曾经学习了两个计数原理.大家知道: (1)如果完成一件事,有N类方式.第一类方式有k1种方法,第二类方式有k2种方法,……,第n类方式有kn种方法,那么完成这件事的方法共有 = + +…+(种). (3.1) (2)如果完成一件事,需要分成N个步骤.完成第1个步骤有k1种方法,完成第2个步骤有k2种方法,……,完成第n个步骤有kn种方法,并且只有这n个步骤都完成后,这件事才能完成,那么完成这件事的方法共有 = · ·…·(种). (3.2) 下面看一个问题: 在北京、重庆、上海3个民航站之间的直达航线,需要准备多少种不同的机票? 这个问题就是从北京、重庆、上海3个民航站中,每次取出2个站,按照起点在前,终点在后的顺序排列,求不同的排列方法的总数. 首先确定机票的起点,从3个民航站中任意选取1个,有3种不同的方法;然后确定机票的终点,从剩余的2个民航站中任意选取1个,有2种不同的方法.根据分步计数原理,共有3×2=6种不同的方法,即需要准备6种不同的飞机票: 北京→重庆,北京→上海,重庆→北京,重庆→上海,上海→北京,上海→重庆. 介绍 播放 课件 质疑 了解 观看 课件 思考 引导 启发学生得出结果 0 15*动脑思考 探索新知 我们将被取的对象(如上面问题中的民航站)叫做元素,上面的问题就是:从3个不同元素中,任取2个,按照一定的顺序排成一列,可以得到多少种不同的排列. 一般地,从n个不同元素中,任取m (m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列,时叫做选排列,时叫做全排列. 总结 归纳 分析 关键 词语 思考 理解 记忆 引导学生发现解决问题方法 20
一、定义: ,这一公式表示的定理叫做二项式定理,其中公式右边的多项式叫做的二项展开式;上述二项展开式中各项的系数 叫做二项式系数,第项叫做二项展开式的通项,用表示;叫做二项展开式的通项公式.二、二项展开式的特点与功能1. 二项展开式的特点项数:二项展开式共(二项式的指数+1)项;指数:二项展开式各项的第一字母依次降幂(其幂指数等于相应二项式系数的下标与上标的差),第二字母依次升幂(其幂指数等于二项式系数的上标),并且每一项中两个字母的系数之和均等于二项式的指数;系数:各项的二项式系数下标等于二项式指数;上标等于该项的项数减去1(或等于第二字母的幂指数;2. 二项展开式的功能注意到二项展开式的各项均含有不同的组合数,若赋予a,b不同的取值,则二项式展开式演变成一个组合恒等式.因此,揭示二项式定理的恒等式为组合恒等式的“母函数”,它是解决组合多项式问题的原始依据.又注意到在的二项展开式中,若将各项中组合数以外的因子视为这一组合数的系数,则易见展开式中各组合数的系数依次成等比数列.因此,解决组合数的系数依次成等比数列的求值或证明问题,二项式公式也是不可或缺的理论依据.
重点分析:本节课的重点是离散型随机变量的概率分布,难点是理解离散型随机变量的概念. 离散型随机变量 突破难点的方法: 函数的自变量 随机变量 连续型随机变量 函数可以列表 X123456p 2 4 6 8 10 12
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 1.1两角和与差的余弦公式与正弦公式. *创设情境 兴趣导入 问题 我们知道,显然 由此可知 介绍 播放 课件 质疑 了解 观看 课件 思考 引导 启发学生得出结果 0 10*动脑思考 探索新知 在单位圆(如上图)中,设向量、与x轴正半轴的夹角分别为和,则点A的坐标为(),点B的坐标为(). 因此向量,向量,且,. 于是 ,又 , 所以 . (1) 又 (2) 利用诱导公式可以证明,(1)、(2)两式对任意角都成立(证明略).由此得到两角和与差的余弦公式 (1.1) (1.2) 公式(1.1)反映了的余弦函数与,的三角函数值之间的关系;公式(1.2)反映了的余弦函数与,的三角函数值之间的关系. 总结 归纳 仔细 分析 讲解 关键 词语 思考 理解 记忆 启发引导学生发现解决问题的方法 25
教 学 过 程教师 行为学生 行为教学 意图 *揭示课题 1.3正弦定理与余弦定理. *创设情境 兴趣导入 在实际问题中,经常需要计算高度、长度、距离和角的大小,这类问题中有许多与三角形有关,可以归结为解三角形问题. 介绍 播放 课件 质疑 了解 观看 课件 思考 学生自然的走向知识点*巩固知识 典型例题 例6 一艘船以每小时36海里的速度向正北方向航行(如图1-9).在A处观察到灯塔C在船的北偏东方向,小时后船行驶到B处,此时灯塔C在船的北偏东方向,求B处和灯塔C的距离(精确到0.1海里). 图1-9 A 解因为∠NBC=,A=,所以.由题意知 (海里). 由正弦定理得 (海里). 答:B处离灯塔约为海里. 例7 修筑道路需挖掘隧道,在山的两侧是隧道口A和(图1-10),在平地上选择适合测量的点C,如果,m,m,试计算隧道AB的长度(精确到m). 图1-10 解 在ABC中,由余弦定理知 =. 所以 m. 答:隧道AB的长度约为409m. 例8 三个力作用于一点O(如图1-11)并且处于平衡状态,已知的大小分别为100N,120N,的夹角是60°,求F的大小(精确到1N)和方向. 图1-11 解 由向量加法的平行四边形法则知,向量表示F1,F2的合力F合,由力的平衡原理知,F应在的反向延长线上,且大小与F合相等. 在△OAC中,∠OAC=180°60°=120°,OA=100, AC=OB=120,由余弦定理得 OC= = ≈191(N). 在△AOC中,由正弦定理,得 sin∠AOC=≈0.5441, 所以∠AOC≈33°,F与F1间的夹角是180°–33°=147°. 答:F约为191N,F与F合的方向相反,且与F1的夹角约为147°. 引领 讲解 说明 引领 观察 思考 主动 求解 观察 通过 例题 进一 步领 会 注意 观察 学生 是否 理解 知识 点
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 1.3正弦定理与余弦定理. *创设情境 兴趣导入 我们知道,在直角三角形(如图)中,,,即 ,, 由于,所以,于是 . 图1-6 所以 . 介绍 播放 课件 质疑 了解 观看 课件 思考 学生自然的走向知识点 0 10*动脑思考 探索新知 在任意三角形中,是否也存在类似的数量关系呢? c 图1-7 当三角形为钝角三角形时,不妨设角为钝角,如图所示,以为原点,以射线的方向为轴正方向,建立直角坐标系,则 两边取与单位向量的数量积,得 由于设与角A,B,C相对应的边长分别为a,b,c,故 即 所以 同理可得 即 当三角形为锐角三角形时,同样可以得到这个结论.于是得到正弦定理: 在三角形中,各边与它所对的角的正弦之比相等. 即 (1.7) 利用正弦定理可以求解下列问题: (1)已知三角形的两个角和任意一边,求其他两边和一角. (2)已知三角形的两边和其中一边所对角,求其他两角和一边. 详细分析讲解 总结 归纳 详细分析讲解 思考 理解 记忆 理解 记忆 带领 学生 总结 20
6.新冠肺炎疫情发生以来,中央强调,在疫情防控工作中,要坚决反对形式主义、 官僚主义, 让基层干部把更多精力投入到疫情防控第一线。这样要求 ( )①有利于政府工作人员依法行政②有利于政府履行职责,维护广大人民群众的根本利益③有利于形成良好的社会风气④警示人类必须坚持走可持续发展的道路A. ①②③ B. ①②④ C. ①③④ D. ②③④ 7.中央纪委监察部网站(现中央纪委国家监委网站)开通纠正“四风”(形式主义、 官僚主义、 享乐主义和奢靡之风) 监督举报直通车,引导网友积极举报各种公款 吃喝、公款旅游等“四风”问题。这一做法 ( )①扩大了我国公民的政治经济权利②有利于政府依法行政,实现国家长治久安③有利于提高我国公民的民主监督意识④有利于国家机关及其工作人员勤政廉洁A. ①②③ B. ①②④ C. ①③④ D. ②③④ 8.《孟子 ·离娄上》有言:“徒善不足以为政, 徒法不能以自行。”
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。