一、情景导入,引出新知师:“上节课,奇奇妙妙邀请我们去参观了他们的家。这节课,又是哪个小朋友要邀请我们去参观他的家呢?”[出示xxx的照片]师:“这节课是xxx邀请我们去参观他的家。xxx,你要带我们去哪里看一看呢?”[PPT展示xxx家的阳台、房间和网络上的花园图片]<xxx指出自己的房间>师:“这节课,我们和xxx一起去参观房间。”[出示课题:10.我的房间]<学生跟读课题>二、循序渐进,程序教学(一)学习词语:房间[出示图片:房间]“xxx的房间是什么样子的?”“我们请xxx来介绍一下自己的房间。”(教师带领xxx说一说自己的房间有什么:大床、小床、电视)“这个有床、有电视,可以睡觉休息的地方就是房间。”[出示词卡:房间]
1. 理解矩形的概念,明确矩形与平行四边形的区别与联系;2.探索并证明矩形的性质,会用矩形的性质解决简单的问题;3.探索并掌握“直角三角形斜边上的中线等于斜边的一半”这个定理.
活动名称:复韵母ie授课教师:卡哇伊 活动目标:1,知道复韵母je的音、形以及四声调。 2,能够掌握标调规则,知道声调标在e上。 3.愿意尝试拼读音节,并组词。活动准备:复韵母e及四声调卡片各一张;音节卡片;若干声母卡片;“果树”一棵;筐子.活动重、难点:正确发出ie的音及四声调,拼读音节。
第一课时: 一、活动准备: 1、幼儿园的背景图 2、儿歌中的动物图片 3、字卡 二、活动过程: (一)导入:师生谈话 1、小朋友们喜欢幼儿园吗? 2、表扬班上高高兴兴上幼儿园的小朋友,引出儿歌中的小动物。
1、出示贴着嘴角下垂嘴的娃娃。 小朋友们看,今天娃娃来和我们一起玩,咦?娃娃怎么不开心?老师来问问,噢,原来娃娃妈妈给娃娃一块没有花的手帕,娃娃不喜欢。出示裁好的宣纸一张,小朋友我们来帮帮娃娃把手帕变漂亮吧。小朋友你们愿意吗?(那怎么帮娃娃呢?) 2、教师示范制作方法 今天,老师教小朋友一样新本领——装饰手帕 (提醒幼儿染色要掌握好时间,宣纸浸染时间太久会浸烂,时间太短会染不上去。提醒幼儿宣纸浸染打开时一定要轻轻的,小心些)
一、导入新课 京东北运河畔,朴实的民风孕育了朴实的人。他们重情重义,爽朗豪放,在他们身上,有着中国农民的人情美。在充满了浓浓乡土气息的语言描写中,他们—小男孩,何满子,爷爷何大学问,奶奶一丈青,是那样的鲜活灵动!看哪,他们正向我们走来。 二、预习检查 1、作者及题解: 刘绍棠(1936~1997)当代作家。河北通县人。1949年读中学时开始发表短篇小说。1951年到河北文联工作。中年,阅读大量文学名著,深受孔梨作品熏染。翌年发表成名作—短篇小说《青枝绿叶》,他的.《蒲柳人家》获首届全国优秀中篇小说二等奖。
一、参观小学,看看小学生是怎样上课的。师:前几天我们一起去参观了蔚斗小学,你们也看到过了哥哥姐姐是怎么样上课的。那们现在请你来告诉我在上课时应该怎样?(当老师在讲课的时候,哥哥姐是怎样听讲的?当老师在提问时,哥哥姐姐是怎样回答?没有叫道的哥哥姐姐又是怎样听的?)师:你们刚刚说了很多,那请你们在来说一说,哥哥姐姐又是怎么做作业的呢?
一、心态调整。 首先,熟知盲点。即了解初高中语文课标的要求差异及变化,做到心中有数,明确衔接过渡的着力点。初、高中语文,考查的重点基本上聚焦在文言文阅读、现代文阅读、诗歌鉴赏、语言运用和作文这五个方面。与初中语文相比,高中语文学习的难度明显在增加了。其具体变化情况简要归类如下: ①语法修辞进考查要求。初中对语法、修辞、文言文词法、句法等知识,侧重于了解,教学中淡化且不作为考查内容;而在高中则重在运用,对语言知识的要求较高,教学中强化且作为重要的考查内容。 ②诗歌阅读增加了难度。从初中的了解到高中的学习,从初中的重在考查积累,到高中强化理解分析,体现了初高中诗歌学习的变化。
二、 讲评要有侧重,抓准学生的薄弱环节 教师备好试卷,备好学生之后,要切中要害分析学生在知识和能力方面的薄弱环节,找出考试中出现的具有共性的典型问题,针对导致错误的根本原因及解决问题的方法进行讲评,才能真正解决学生存在的问题,因此试题的讲评应该有所侧重,要有针对性。在讲评试卷时,并不一定按照试题的顺序逐题讲解,而是有针对性的将试题重新组合,侧重讲解,提高效率。 1.侧重抓难点 有了课前的统计数据,教师很容易把握住学生的难点所在,即那些具有代表性的错误试题,教师们可进行引导、分析讲解,由于学生具有迫切的求知欲望,课上学生也会表现得更为热情高涨。这样既节省了时间,又提高了效率,取得了较好的教学效果。
1、结合实际体验说礼仪的重要,掌握一般常用的礼貌语言及几点说话礼仪的技巧,经过一段时间的努力,使校园里呈现出一派祥和的气氛,到处可闻礼貌语言,使礼貌礼仪教育见成效。 2、透过本次活动,培养学生合作的意识。 3、透过亲身的体验活动,使学生了解更多的校园礼仪。 活动重点: 本次活动,提出期望,期望学生能把校园礼仪的一些规范应用到现实的学习生活中区。
七年级的古文教学已经有初步的基础,根据已有的知识体系,阅读这一类的古白话,在内容的理解上,不会有太大的困难。然而,本文最大的价值在于写作特色。而这些又恰恰涉及各类描写和修辞,它们是白话文理解和写作常用的方法。据此,我设计了本堂课的教学重点和难点。其中,我把重点放在了体会正、侧面描写对烘托人物形象的作用,品味运用特殊的比喻描摹声音。而识别并简单运用这些特殊的比喻描摹自己生活中的声音则成为教学的难点。希望通过这堂课,让学生习得侧面描写和正面描写相结合的表现手法,理解多角度描写尤其是侧面衬托的作用,提高学生运用多种手法刻画人物形象的能力。揣摩语言:通过学习课文中特殊比喻手法,运用形象化的语言描绘声音的妙处,提高学生语言鉴赏和运用能力。
一、教材分析一次函数是中学数学中的一种最简单、最基本的函数,是反映现实世界的数量关系和变化规律的常见数学模型之一,一次函数这一章在整个教材中将起着承上启下的作用,特别是一次函数的图像和性质的理解和掌握,又是后续知识发展的起点,对今后知识的掌握起着决定性的作用。教学目标:(一)知识与技能1.理解掌握正比例函数、一次函数的概念、图像、性质及解析式的确定。2.理解一次函数与一元一次方程、一元一次不等式、二元一次方程组的关系,会应用于解决数学和实际生活问题。
活动内容:教师首先让学生回顾学过的三类事件,接着让学生抛掷一枚均匀的硬币,硬币落下后,会出现正面朝上、正面朝下两种情况,你认为正面朝上和正面朝下的可能性相同吗?(让学生体验数学来源于生活)。活动目的:使学生回顾学过的三类事件,并由掷硬币游戏培养学生猜测游戏结果的能力,并从中初步体会猜测事件可能性。让学生体会猜测结果,这是很重要的一步,我们所学到的很多知识,都是先猜测,再经过多次的试验得出来的。而且由此引出猜测是需通过大量的实验来验证。这就是我们本节课要来研究的问题(自然引出课题)。
这是本节课的重点。让同学们将∠aob对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开,请同学们观察并思考:后折叠的二条折痕的交点在什么地方?这两条折痕与角的两边有什么位置关系?这两条折痕在数量上有什么关系?这时有的同学会说:“角的平分线上的点到角的两边的距离相等”.即得到了角平分线的性质定理的猜想。接着我会让同学们理论证明,并转化为符号语言,注意分清题设和结论。有的同学会用全等三角形的判定定理aas证明,从而证明了猜想得到了角平分线的性质定理。
问题1:你能证明“两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行”这个命题的正确性吗?已知:如图,∠1和∠2是直线a,b被直线c截出的内错角,且∠1=∠2.求证:a∥b. 问题2:你能证明“两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行”这个命题的正确性吗?已知:如图,∠1和∠2是直线a、b被直线c截出的同旁内角,且∠1与∠2互补.求证:a∥b
1、交流与发现为了了解本校学生暑假期间参加体育活动的情况,学校准备抽取一部分学生进行调查,你认为按下面的调查方法取得的结果能反映全校学生的一般情况吗?如果不能反映,应当如何改进调查方法?方法1:调查学校田径队的30名同学;方法2:调查每个班的男同学;方法3:从每班抽取1名同学进行调查;方法4:选取每个班级中的一半学生进行调查.通过前面的活动,学生亲身经历了一次数据的调查过程,并通过对所得数据的计算和分析,了解了自己在家干家务活的时间所处的位置和水平,在调查过程中体会到调查方便有效的重要性.接下来,就能很好地解决交流与发现中的问题.师生共同讨论完成交流与发现.
学习过程:一、自主预习课本P175——186的内容,独立完成课后练习1、2、3、4、5后,与小组同学交流(课前完成)二、回顾课本,思考下列问题:1.SAS定理的内容2.ASA定理的内容3.SSS定理的内容4.几何证明的过程的步骤
1、问题1的设计基于学生已有的一元一次方程的知识,学生独立思考问题,同学会考虑到题中涉及到等量关系,从中抽象出一元一次方程模型;同学可能想不到用方程的方法解决,可以由组长带领进行讨论探究.2、问题2的设计为了引出二元一次方程,但由于同学的知识有限,可能有个别同学会设两个未知数,列出二元一次方程;如果没有生列二元一次方程,教师可引导学生分析题目中有两个未知量,我们可设两个未知数列方程,再次从中抽象出方程模型.根据方程特点让生给方程起名,提高学生学习兴趣.3、定义的归纳,先请同学们观察所列的方程,找出它们的共同点,并用自己的语言描述,组内交流看法;如果学生概括的不完善,请其他同学补充. 交流完善给出定义,教师规范定义.
活动内容:① 已知,如图,在三角形ABC中,AD平分外角∠EAC,∠B=∠C.求证:AD∥BC分析:要证明AD∥BC,只需证明“同位角相等”,即需证明∠DAE=∠B.证明:∵∠EAC=∠B+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∠B=∠C(已知)∴∠B=∠EAC(等式的性质)∵AD平分∠EAC(已知)∴∠DAE=∠EAC(角平分线的定义)∴∠DAE=∠B(等量代换)∴AD∥BC(同位角相等,两直线平行)想一想,还有没有其他的证明方法呢?这个题还可以用“内错角相等,两直线平行”来证.
1、方程的定义1)像这种用等号“=”来表示相等关系的式子,叫等式。(老师给出定义。)2)请大家观察左边的这些式子,看看它们有什么共同的特征?(老师提出问题。)3)列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出含有未知数的等式叫做方程。(学生思考后,老师给出新学内容方程的定义。)4)判断方程的两个关键要素: ①有未知数 ②是等式(老师提问,并给出。)