2、尝试在手套上画,贴的技能。 3、培养幼儿在手的造型上进行大胆夸张的装饰、涂画,能打扮出美观的图案。 活动准备 1、课前教幼儿玩手形游戏。 2、手套每人1副、水彩笔、胶棒、彩色纸、皮筋、幕、磁带、魔术用具活动过程一、以游戏的形式导入主题 1、请幼儿带着手套听音乐进入教室。 2、教师在幕后分别出示1只手1双手吸引幼儿的注意,“啊!”这是一双会变魔术的手。 请魔术师随着音乐变魔术。 3、请幼儿上来尝试变魔术,用手套做各种不同的造型。让幼儿说说自己做的是什么,是怎么变的。请全体幼儿来学一学。
我园的教师们集思广益,充分利用了农村的资源,竹竿、稻草、斗笠、竹篾,这些材料虽然我们的孩子们经常看见,但是在体育活动中它们变成了玩具,孩子们感到十分地惊喜。 我采用环环相扣、循序渐进的教学原则来组织此活动,活动流程为:我设计了以下四个环节:热身运动——尝试多种玩法、合作交流——游戏活动——放松活动。 第一个环节是热身运动:这是在开展体育锻炼必不可少的环节。我让幼儿在的音乐声中开始做斗笠操。使幼儿的关节得到舒展,肌肉得以放松。为活动能够安全的开展提供了生理上的准备。 第二个环节是幼儿尝试斗笠的各种玩法。教师要启发鼓励孩子创造出不同的玩斗笠的方法,这是活动的重点,通过这环节充分调动幼儿参与活动的积极性,让幼儿交流、分享斗笠的不同玩法,从中感到成功的乐趣。这一环节分四个层次来完成:分散玩、集合分享、合作玩、竞赛活动。通过已有经验探索更多的玩法,接下来的合作环节——玩火车钻山洞的游戏则是教师在这两次分散玩的基础上引导孩子完成的。
【教学目标】知识目标:⑴ 理解任意角的三角函数的定义及定义域;⑵ 理解三角函数在各象限的正负号;⑶掌握界限角的三角函数值.能力目标:⑴会利用定义求任意角的三角函数值;⑵会判断任意角三角函数的正负号;⑶培养学生的观察能力.【教学重点】⑴ 任意角的三角函数的概念;⑵ 三角函数在各象限的符号;⑶特殊角的三角函数值.【教学难点】任意角的三角函数值符号的确定.【教学设计】(1)在知识回顾中推广得到新知识;(2)数形结合探求三角函数的定义域;(3)利用定义认识各象限角三角函数的正负号;(4)数形结合认识界限角的三角函数值;(5)问题引领,师生互动.在问题的思考和交流中,提升能力.
2、尝试用较完整、连贯的语言讲述沙雕海报的主要内容。3、乐于参与沙雕海报的阅读活动。活动准备1、材料准备:沙雕海报若干、沙雕小书、沙雕动画、沙雕ppt等。2、知识准备:课前了解相关的沙雕节的内容;收集相关的海报资料。活动过程1、谈话引题,了解海报含义 (1)谈话:什么是海报? (2)幼儿根据已有经验交流。
游戏名称:悄悄话(大班)设计者:公桂兰目的:激发幼儿积极参与活动的兴趣。玩法:按幼儿座次将其分成四组,教师悄悄地告诉每组排头幼儿一句话,然后自排头开始往下传话,传到最后一名幼儿时,最后一名幼儿站起大声说出听到的话,以传得又对又快的组为胜。游戏名称:猜谜(大班)设计者:王春苗目的:培养幼儿的思维能力、口语表达能力。玩法:教师说谜面请幼儿说出谜底。也可请一名幼儿说谜面,教师与其他幼儿进行猜谜。游戏名称:超级模仿秀(大班)设计者:公桂兰目的:培养幼儿模仿能力。玩法:请3-5名幼儿到前面,侧向全体幼儿,站成一排,面向第二名幼儿编一动作(如起床穿衣、照镜子、梳头等)然后第二名幼儿再向第三名幼儿模仿第一名幼儿所做的动作,依次模仿,最后一名幼儿模仿完动作后,说出做的是什么动作。
二.预设目标1.学习用适当的方式表达自己的情绪,心情愉快的参加各类活动。2.学习使用筷子,安静愉快的进餐,养成不挑食,不偏食的习惯。3.能耐心倾听别人讲话,理解他人说话意思,并做积极的应答。4.学习使用恰当的礼貌用语与人交往。5.乐于参与集体活动,体验与老师、同伴共处的快乐,喜欢老师、小朋友。6.知道自己的兴趣和能力,积极参与活动,体验成功。7.亲近周围环境中的动植物,了解其生长条件,懂得关心动植物。8、鼓励幼儿大胆的选择自己喜欢的图案、颜色表达自己的情感,并有条理的进行剪、画、贴粘等活动。
春的来临,使大地万物复苏,春暖花开。孩子们开始收集自然角了,最近每天都有孩子带来各种自然角的物品,如:水果、干果、盆景等等。一个星期一的早上,黄灏小朋友手里拎着一个饲养盒兴冲冲的来到了教室,大声的喊着:“老师、老师,我带来了一条蛇”。他的喊声吸引了许多孩子,他们一起挤着看这条蛇。有几个女孩子似乎比较胆小,抱着双臂说:“我最怕蛇了,会咬人的”。但好奇心又驱使着她们追随着看热闹,我悄悄的走过去,倾听着孩子们的议论,曹振飞说:“蛇的舌头和我们人的舌头是不一样的”。刘景超说:“我看过动物世界,有的蛇有毒,有的蛇没有毒的”。黄铭均说:“蛇身上的花纹是不一样的”。王中天说:“听说蛇还会脱皮呢”。徐雨航说:“蛇没有脚它怎么走的呢?”。周祖豪说:“我还吃过蛇肉呢”等等。我从孩子这些谈话中对他们的经验有了一定的了解,在获取这些信息的基础上,初步拟订了一个关于蛇的主题网络图,图中实线部分是孩子们实际活动内容,虚线为教师预定内容。 场景一:蛇的趣闻 确定蛇的主题后,我开始与孩子们一起收集有关蛇的资料,短短的几天里孩子们通过自己的方法收集到了一些有关蛇 书籍和VCD,还从网上下载了一些有关蛇的资料,其中黄铭均带的一本书《有趣的蛇》最受孩子们的关注了,他们没想到蛇与人类有如此密切的关系,书上记载着有一种双头蛇、会唱歌的蛇、会跳舞的蛇、会看门的蛇、会当保姆的蛇、会灭火的蛇、还可以用活蛇做耳环、做门帘等等。孩子们真是太激动了,他们迫不及待的想用自己的方式方法表现出来,有的孩子选择了用泥工捏各种各样有趣的蛇,有的借用废旧材料、积木等拼搭蛇洞、蛇桥等,选择最多的是绘画,许多孩子一边画一边嘴里唠叨着,忽而沉思,忽而又挥舞着手中的画笔。不一会,一幅幅生动有趣的画,呈现在了我的面前。下面是部分孩子作品的解读。王中天: 有一条蛇,它想去爬树可是爬不上去,后来两条蛇一起爬了上去,房子的门帘也是许多蛇串成的”。夏 炎: 许多蛇在一起比赛谁跑的快,“预备起”它们一起跑了起来,跑的一条条累的伸长了舌头,有一条蛇跑不动了,就停下来休息。王 炎: 有一天,有一个小朋友要过河,没有桥,怎么办呢?一条蛇看见了就游了过来架在河上变成了一座桥,小朋友就过河了。还有条蛇盘在那儿晒太阳。周秋妤:这是一条毒蛇,它在吃草,吃饱了在草丛里了生了5个蛇蛋。俞琦涵:有一天太阳下山了,蛇也要回家了,在散步时听见蛇宝宝在蛋里哭,它们就在旁边保护它们了。 刘明玉:这个人家养了两条蛇,看见下雨了,地上有水就变成一条路,让大家从它身上过去,另一条蛇站在门口看门,等着主人回家。在解读孩子们的作品时,我始终被孩子们的作品深深地感动着,仿佛自己走进了孩子那童话般的世界,与孩子们一起成长着、快乐着,对一切充满了美好的遐想。
2、发展幼儿的观察力和绘画表现能力。3、加深幼儿对老师的热爱之情。二、活动准备:1、请配班老师配合上课。2、带花边的纸或一次性纸餐盘若干、彩笔。三、活动过程:1、引出教师节,导入活动,引起幼儿兴趣。教师:小朋友,我们班上有几位老师?你们怎样称呼她们?明天就是教师节了,今天我们给老师画张像,画好后,送给老师好不好?
【活动主题】关心班级 热爱集体【活动目的】让班级同学都参与到活动中来,使同学们懂得关心集体,热爱班级的深刻含义。【活动准备】 1.让两位同学准备好关于“关心班级,热爱集体”的演讲稿。2.让同学们收集关于“关心班级,热爱集体”的名人名言。3.布置教室。【活动过程】一、教师导入学校是个大集体,班级是个小集体,为集体着想,就能汇成巨大的力量。一个人的成才,一个人的成功,都离不开集体。每一位同学都应该是关心班级,热爱集体的。为此,我们班这周专门组织了这次“关心班级,热爱集体”的主题班会。二、活动具体程序(一)活动开始:主持人1:尊敬的老师!主持人2:亲爱的同学们!合:大家好!主持人1:下面我宣布“关心班级,热爱集体”主题班会现在开始!(二)《关心集体热爱班级的重要意义》的演讲主持人1:下面请A同学为我们演讲“关心集体热爱班级的重要意义”
一、教学目标1、让学生懂得使用文明用语是学生应有的美德。2、让学生知道常用的文明用语,并学会运用。3、培养学生使用文明用语的良好习惯。
本节课标解读:1.说明以种植业为主的农业地域类型的形成条件及特点;2.说出商品谷物农业的分布范围,说明商品谷物农业的形成条件及特点。内容地位与作用:农业是受自然环境影响最大的产业。农业是发展历史最悠久的产业,随着社会的发展和进步,社会环境对农业的影响越来越大。以季风水田农业为主的农业地域类型,主要体现自然环境对农业地域形成的影响;商品谷物农业则体现了社会环境对农业地域形成的影响。本节内容包括两部分内容,一个是季风水田农业,主要分布在亚洲季风区;一个是商品谷物农业,主要分布在发达国家。教材文字内容不多,配备了大量的地图和景观图。因此,在教学过程中要充分组织学生查阅地图,挖掘地理信息,培养分析能力。分析农业区位因素时,必须从自然因素和社会经济因素两个方面去分析,找出优势区位因素来。
1.导入新课:通过视频“阿根廷的潘帕斯草原”,引起学生的兴趣,进而引出新的学习内容——以畜牧业为主的农业地域类型。2.新课讲授:第一课时,首先通过展示“世界大牧场放牧业分布图”,引出对大牧场放牧业的初步认识,了解其分布范围;然后通过展示“潘帕斯草原的地形图”“气候图”和“牧牛业景观图”,讨论分析大牧场放牧业形成的区位条件,并进行案例分析,学习该种农业的特点;最后,理论联系实际,展示:“中国地形图”“气候图”“人口图”“交通图”和“内蒙古牧区图”,分组讨论我国内蒙古地区能否采用潘帕斯草原大牧场放牧业的生产模式。第二课时,首先通过设问顺利从大牧场放牧业转入乳蓄业,通过讲述让学生了解乳蓄业的概念;然后通过展示世界乳畜业分布图,了解乳蓄业主要分布在哪些地区;接着,通过西欧乳蓄业的案例分析,得到乳蓄业发展的区位因素及其特点。
二.目标分析: 教学重点.难点 重点:集合的含义与表示方法. 难点:表示法的恰当选择.教学目标 l.知识与技能 (1)通过实例,了解集合的含义,体会元素与集合的属于关系; (2)知道常用数集及其专用记号; (3)了解集合中元素的确定性.互异性.无序性; (4)会用集合语言表示有关数学对象;
一.关于教学内容和教学要求的认识 本节课是一节探究性活动课,教学大纲上对数学活动课作了这样的解释:“数学活动课指在教师的指导下,通过学生自主活动,以获得直接经验和培养实践能力为主的课程。教育的目的在于弥补数学学科课程的不足,加强实践环节,重视数学思维的训练,培养学生的学习兴趣,促进学生志趣、个性、特长等自主和谐发展, 从而全面提高学生的数学素质”。可见教学大纲把实习和开展探究性教学放在了重要的地位。
二、学习新知1.正方形的定义在这一环节中,学生很容易犯的一个错误就是条件重复。这时我会引导学生从画图入手,提示他们:你能不能减少条件画出正方形呢?这一环节中我的观点是正方形的定义不是唯一的。我们可以从不同的角度来总结,只要合理就加以肯定。比如当学生总结出:四个角都是直角,四条边都相等的四边形是正方形。这时可以提醒学生是不是一定要四条边都相等,减少边的条数可以画出来吗?角的个数可以减少吗?鼓励学生动手试一试。通过动手画图可以很容易的得到正方形的一个定义:三个角都是直角,一组邻边都相等的四边形是正方形。通过小组讨论的形式来完成这一环节的设置。鼓励学生利用现有的材料继续构造正方形。从另一个角度总结正方形的定义。
课题序号 授课班级 授课课时2授课形式新课授课章节 名称§9-1 平面基本性质使用教具多媒体课件教学目的1.了解平面的定义、表示法及特点,会用符号表示点、线、面之间的关系—基础模块 2.了解平面的基本性质和推论,会应用定理和推论解释生活中的一些现象—基础模块 3.会用斜二测画法画立体图形的直观图—基础模块 4.培养学生的空间想象能力教学重点用适当的符号表示点、线、面之间的关系;会用斜二测画法画立体图形的直观图教学难点从平面几何向立体几何的过渡,培养学生的空间想象能力.更新补充 删节内容 课外作业 教学后记能动手画,动脑想,但立体几何的语言及想象能力差
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 10.3总体、样本与抽样方法(一) *创设情境 兴趣导入 【实验】 商店进了一批苹果,小王从中任意选取了10个苹果,编上号并称出质量.得到下面的数据(如表10-6所示): 苹果编号12345678910质量(kg)0.210.170.190.160.200.220.210.180.190.17 利用这些数据,就可以估计出这批苹果的平均质量及苹果的大小是否均匀. 介绍 质疑 讲解 说明 了解 思考 启发 学生思考 0 10*动脑思考 探索新知 【新知识】 在统计中,所研究对象的全体叫做总体,组成总体的每个对象叫做个体. 上面的实验中,这批苹果的质量是研究对象的总体,每个苹果的质量是研究的个体. 讲解 说明 引领 分析 理解 记忆 带领 学生 分析 20*巩固知识 典型例题 【知识巩固】 例1 研究某班学生上学期数学期末考试成绩,指出其中的总体与个体. 解 该班所有学生的数学期末考试成绩是总体,每一个学生的数学期末考试成绩是个体. 【试一试】 我们经常用灯泡的使用寿命来衡量灯炮的质量.指出在鉴定一批灯泡的质量中的总体与个体. 说明 强调 引领 观察 思考 主动 求解 通过例题进一步领会 35
解析:①过原点时,直线方程为y=-34x.②直线不过原点时,可设其方程为xa+ya=1,∴4a+-3a=1,∴a=1.∴直线方程为x+y-1=0.所以这样的直线有2条,选B.答案:B4.若点P(3,m)在过点A(2,-1),B(-3,4)的直线上,则m= . 解析:由两点式方程得,过A,B两点的直线方程为(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又点P(3,m)在直线AB上,所以3+m-1=0,得m=-2.答案:-2 5.直线ax+by=1(ab≠0)与两坐标轴围成的三角形的面积是 . 解析:直线在两坐标轴上的截距分别为1/a 与 1/b,所以直线与坐标轴围成的三角形面积为1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三个顶点A(0,4),B(-2,6),C(-8,0).(1)求三角形三边所在直线的方程;(2)求AC边上的垂直平分线的方程.解析(1)直线AB的方程为y-46-4=x-0-2-0,整理得x+y-4=0;直线BC的方程为y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直线AC的方程为x-8+y4=1,整理得x-2y+8=0.(2)线段AC的中点为D(-4,2),直线AC的斜率为12,则AC边上的垂直平分线的斜率为-2,所以AC边的垂直平分线的方程为y-2=-2(x+4),整理得2x+y+6=0.
解析:当a0时,直线ax-by=1在x轴上的截距1/a0,在y轴上的截距-1/a>0.只有B满足.故选B.答案:B 3.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:设所求直线方程为x-2y+c=0,把点(1,0)代入可求得c=-1.所以所求直线方程为x-2y-1=0.故选A.4.已知两条直线y=ax-2和3x-(a+2)y+1=0互相平行,则a=________.答案:1或-3 解析:依题意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直线.(1)求实数m的范围;(2)若该直线的斜率k=1,求实数m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直线,则m2-3m+2与m-2不能同时为0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
1.确定研究对象,明确哪个是解释变量,哪个是响应变量;2.由经验确定非线性经验回归方程的模型;3.通过变换,将非线性经验回归模型转化为线性经验回归模型;4.按照公式计算经验回归方程中的参数,得到经验回归方程;5.消去新元,得到非线性经验回归方程;6.得出结果后分析残差图是否有异常 .跟踪训练1.一只药用昆虫的产卵数y与一定范围内的温度x有关,现收集了6组观测数据列于表中: 经计算得: 线性回归残差的平方和: ∑_(i=1)^6?〖(y_i-(y_i ) ?)〗^2=236,64,e^8.0605≈3167.其中 分别为观测数据中的温度和产卵数,i=1,2,3,4,5,6.(1)若用线性回归模型拟合,求y关于x的回归方程 (精确到0.1);(2)若用非线性回归模型拟合,求得y关于x回归方程为 且相关指数R2=0.9522. ①试与(1)中的线性回归模型相比较,用R2说明哪种模型的拟合效果更好 ?②用拟合效果好的模型预测温度为35℃时该种药用昆虫的产卵数.(结果取整数).
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。