1.直线2x+y+8=0和直线x+y-1=0的交点坐标是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程组{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交点坐标是(-9,10).答案:B 2.直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,则k的值为( )A.-24 B.24 C.6 D.± 6解析:∵直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,可设交点坐标为(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故选A.答案:A 3.已知直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,若l1⊥l2,则点P的坐标为 . 解析:∵直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,联立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴点P的坐标为(3,3).答案:(3,3) 4.求证:不论m为何值,直线(m-1)x+(2m-1)y=m-5都通过一定点. 证明:将原方程按m的降幂排列,整理得(x+2y-1)m-(x+y-5)=0,此式对于m的任意实数值都成立,根据恒等式的要求,m的一次项系数与常数项均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤
(1)几何法它是利用图形的几何性质,如圆的性质等,直接求出圆的圆心和半径,代入圆的标准方程,从而得到圆的标准方程.(2)待定系数法由三个独立条件得到三个方程,解方程组以得到圆的标准方程中三个参数,从而确定圆的标准方程.它是求圆的方程最常用的方法,一般步骤是:①设——设所求圆的方程为(x-a)2+(y-b)2=r2;②列——由已知条件,建立关于a,b,r的方程组;③解——解方程组,求出a,b,r;④代——将a,b,r代入所设方程,得所求圆的方程.跟踪训练1.已知△ABC的三个顶点坐标分别为A(0,5),B(1,-2),C(-3,-4),求该三角形的外接圆的方程.[解] 法一:设所求圆的标准方程为(x-a)2+(y-b)2=r2.因为A(0,5),B(1,-2),C(-3,-4)都在圆上,所以它们的坐标都满足圆的标准方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圆的标准方程是(x+3)2+(y-1)2=25.
情境导学前面我们已讨论了圆的标准方程为(x-a)2+(y-b)2=r2,现将其展开可得:x2+y2-2ax-2bx+a2+b2-r2=0.可见,任何一个圆的方程都可以变形x2+y2+Dx+Ey+F=0的形式.请大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲线是不是圆?下面我们来探讨这一方面的问题.探究新知例如,对于方程x^2+y^2-2x-4y+6=0,对其进行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因为任意一点的坐标 (x,y) 都不满足这个方程,所以这个方程不表示任何图形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通过恒等变换为圆的标准方程,这表明形如x2+y2+Dx+Ey+F=0的方程不一定是圆的方程.一、圆的一般方程(1)当D2+E2-4F>0时,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)为圆心,1/2 √(D^2+E^2 "-" 4F)为半径的圆,将方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)当D2+E2-4F=0时,方程x2+y2+Dx+Ey+F=0,表示一个点(-D/2,-E/2)(3)当D2+E2-4F0);
【答案】B [由直线方程知直线斜率为3,令x=0可得在y轴上的截距为y=-3.故选B.]3.已知直线l1过点P(2,1)且与直线l2:y=x+1垂直,则l1的点斜式方程为________.【答案】y-1=-(x-2) [直线l2的斜率k2=1,故l1的斜率为-1,所以l1的点斜式方程为y-1=-(x-2).]4.已知两条直线y=ax-2和y=(2-a)x+1互相平行,则a=________. 【答案】1 [由题意得a=2-a,解得a=1.]5.无论k取何值,直线y-2=k(x+1)所过的定点是 . 【答案】(-1,2)6.直线l经过点P(3,4),它的倾斜角是直线y=3x+3的倾斜角的2倍,求直线l的点斜式方程.【答案】直线y=3x+3的斜率k=3,则其倾斜角α=60°,所以直线l的倾斜角为120°.以直线l的斜率为k′=tan 120°=-3.所以直线l的点斜式方程为y-4=-3(x-3).
解析:①过原点时,直线方程为y=-34x.②直线不过原点时,可设其方程为xa+ya=1,∴4a+-3a=1,∴a=1.∴直线方程为x+y-1=0.所以这样的直线有2条,选B.答案:B4.若点P(3,m)在过点A(2,-1),B(-3,4)的直线上,则m= . 解析:由两点式方程得,过A,B两点的直线方程为(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又点P(3,m)在直线AB上,所以3+m-1=0,得m=-2.答案:-2 5.直线ax+by=1(ab≠0)与两坐标轴围成的三角形的面积是 . 解析:直线在两坐标轴上的截距分别为1/a 与 1/b,所以直线与坐标轴围成的三角形面积为1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三个顶点A(0,4),B(-2,6),C(-8,0).(1)求三角形三边所在直线的方程;(2)求AC边上的垂直平分线的方程.解析(1)直线AB的方程为y-46-4=x-0-2-0,整理得x+y-4=0;直线BC的方程为y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直线AC的方程为x-8+y4=1,整理得x-2y+8=0.(2)线段AC的中点为D(-4,2),直线AC的斜率为12,则AC边上的垂直平分线的斜率为-2,所以AC边的垂直平分线的方程为y-2=-2(x+4),整理得2x+y+6=0.
解析:当a0时,直线ax-by=1在x轴上的截距1/a0,在y轴上的截距-1/a>0.只有B满足.故选B.答案:B 3.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:设所求直线方程为x-2y+c=0,把点(1,0)代入可求得c=-1.所以所求直线方程为x-2y-1=0.故选A.4.已知两条直线y=ax-2和3x-(a+2)y+1=0互相平行,则a=________.答案:1或-3 解析:依题意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直线.(1)求实数m的范围;(2)若该直线的斜率k=1,求实数m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直线,则m2-3m+2与m-2不能同时为0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
这一特点还着重体现在动词的应用上面,“鸟宿池边树,僧敲月下门”中的“敲”,就比“推”更能体现诗中以动衬静的特点。在字词上不断推敲,就能体会到诗歌语言高度凝练的特点。再说,古人创作古诗词,并不是写出来的,而是吟咏出来的,他们十分注重音韵在表情达意方面的作用。李清照的《声声慢》便是一个极好的例子,开头“寻寻觅觅,冷冷清清,凄凄惨惨戚戚”十四个叠字,读起来抑扬顿挫,缠绵哀婉,将李清照情绪上的失落、低沉,甚至哽咽展现得淋漓尽致。正因为诗歌的这三个鲜明特点,使得诗歌与别的文体区分开来,具有鲜明的个性。师点评:对于诗歌的扩写,要通过多种方式展现诗歌的主要特点。对诗歌的扩写练习,要求从诗歌意象、语言和节奏韵律三方面展开。首先,这篇习作从三个不同时代的诗歌总结出相同的规律——利用意象表达情感。其次,将古诗词与现代诗进行对比,展现了第二个特点。最后,以《声声慢》为例,详细分析了第三个特点。在紧密围绕诗歌特点的基础上,通过多种方法呈现了对诗歌的认识。
2、打破班级界限,与同伴协商、分享、合作,体验活动的乐趣,促进幼儿社会性的发展。3、在活动中遵守规则,礼貌待人。活动准备:(一) 前期经验准备:1、谈话活动《六一畅想》2、给幼儿与家长的倡议书3、游戏活动:购物4、认识一元硬币
尊敬的老师、亲爱的同学们: 早上好!我今天演讲的主题是:《社会主义核心价值观记心中》。同学们,你们知道什么是社会主义核心价值观吗?那就是富强、民主、文明、和谐;自由、平等、公正、法治;爱国、敬业、诚信、友善。那么我们小学生要怎样践行核心价值观呢?当我们发现地上有废纸时,要主动把它捡起,放进垃圾箱;当发现有同学乱扔垃圾、践踏草地时,我们要及时阻止
中班:通过观察自己由小到大的变化感知每个时期都有一定的特点,帮助幼儿树立积极的自我意识,形成初步的自尊。大班:使幼儿知道自己不但会长大,本领也越学越多,还有着与别人不同的特长、爱好,鼓励幼儿在集体面前表现出来,促使孩子产生满足感和充实感,树立自信。(二) 设计活动 1、 通过教师和幼儿共同准备,收集物品,提高幼儿的兴趣,在积极、主动投入的过程中感到自己长大了,增强幼儿的自我意识。 在中班“我会长大”活动中,我们让孩子同父母老师共同收集不同时期的衣服、用品、照片、录像片、出生时的宝宝卡……这些反映了幼儿成长的状况,在准备收集的过程中让孩子感到:我从婴儿长到现在,从只会吃奶到现在能自己吃饭;从要大人抱着到现在会跑步、拍球;从小时候处处要大人照顾,到现在会自己穿衣叠被,从这些具体的感知中,幼儿体验到自己在长大,个子在长高,本领也越学越多,以后还会长大,还要学更多的本领。 2、 在系列活动“我长大了”中,教师应抓住有利契机,向幼儿进行正面的、积极的影响,让幼儿对自我开成正确认识,逐步学会评价自己。 在大班活动中,幼儿继续讨论自己在渐渐长大,身体、能力也在发生变化,更重要的是除了外貌与别人不同,自己还有许多与别人不同的长处,教师要在日常生活中注意观察,和幼儿一起发现他们的长处,给幼儿以表现的机会,孩子们通过竞赛看到自己叠被子、系鞋带比别人快、好,通过表演和展示作品,让大家看到自己的绘画好,表演朗诵比别人强等,通过情景再现让幼儿看到自己的特长,在进行上述种种活动中,增进了孩子对自我的积极体验,使他们进一步对自己有所认识,从而增强对自己的信心。
一、教学性情境 活动名称:交朋友 活动要求:让幼儿学会用友好的态度对待别人,当别人不接受自己时,会想办法让别人喜欢自己。 活动准备:木偶剧表演,课前学习表演《拉拉勾》。 活动指导: (一)创设情境《哑巴老虎》,幼儿观察交流。 1.小动物们愿意和老虎威威交朋友吗?为什么? 2.老虎威威想了一个不说话的办法来跟小动物们交朋友,你们想一想不说法这个办法好不好?为什么?(可用表情、动作,好听的声音)(幼儿尝试)。 3. 除了用这些方法交朋友,还有什么好办法能交朋友?(幼儿商量,教师巡迥指导)。
活动准备:香蕉每人一个;小熊、袜子、彩色的魔术盒各一个;小毛巾每人一条设计思路:3——4岁幼儿由于年龄还小所以在情绪上还不是很稳定,但是他们对吃的玩的东西十分感兴趣,为了使幼儿在生活化的活动中获得有益的发展,再结合我们的主题活动《香香的水果》特设了本次活动,以启发幼儿的想象力和口头表述能力。活动流程:导入课题——启发想象——分享食物 活动过程:导入课题,使幼儿产生兴趣1、师:小猪今天带来了一样很好吃的东西,你们猜猜看,这里面是什么呀?(出示小熊和事先在袜子里藏好的香蕉)2. 幼儿讨论,自由猜想。3、请幼儿上来摸摸。4. 揭开谜底,出示香蕉。
活动准备: 1、5以内加法算式卡片若干张,加法图片若干张,口述图片5张。 2、红、黄、绿队牌三张、抢答器(锣)三个,数字贴纸(选手号)若干张、统计牌一个,奖牌榜三张、 3、红苹果若干个、奖状若干张、颁奖音乐一首。 活动过程: 一、引题 1、师:大家好,欢迎你们来到快乐数学大本营,我是快乐数学栏目主持人——小问号。我们快乐数学大本营的口号是:快乐数学,快乐无限!我们现在整齐、响亮地把口号喊出来:快乐数学,快乐无限!ye! 首先我来介绍今天参加我们快乐数学大本营的三个方队,他们是(举队牌)——红队,欢迎你们!他们是——黄队,欢迎你们!他们是——绿队,欢迎你们!接下来我们马上进入快乐数学第一关。 二、快乐数学第一关。 1、师:第一关:必答题。红黄绿队的每一位选手都要回答一道题目,每答对一题,奖励一个红苹果。看哪一队的红苹果个数最多。 2、师:答题开始。请听题3+3=?(教师请三位选手轮流回答,提醒幼儿把题读完整),例幼儿:2+3=5 师:(出示正确答案)回答正确。(三位选手依此回答完毕)。
活动预设:来来往往的车;有车厢的车与无车厢的车;两轮车、三轮车和四轮车;汽车的声音;交通警等活动。 活动准备:1、前一周要求孩子下周每人都带一个汽车的玩具。2、教师在生活区的四张桌子中间的地毯上用两色胶带铺了一个十字路口。3、教师选择与汽车、交通有关的教材,如儿歌、歌曲、美工、故事等。 意大利瑞吉欧的教育者认为,如果教师有1000个假设,那么他就容易接受来自孩子的第1001个或2000个不同的反应。教师只有在自己设想足够多的可能性时,才更容易接受新的想法。教师制定各阶段具体教学目标是根据教师对总体教学目标的理解,以及对孩子已有经验、能力水平的了解和对孩子潜在水平、兴趣的预测所提出的,它融合了教师的理论知识、教学经验与教师对孩子已有的观察和认识。同时,教师也相应地做出教学准备,也就是创设一定的实验条件,帮助目标的实施与达成。而这些教学分目标是否可行,则应在教学实施阶段得到验证,从而做出调整。 教学实施的过程则是对预先制定的各阶段教学目标的探索、验证和创新的过程。教学的实施不仅仅依靠活动初期教师提出的假设,而且要依靠孩子们的反应。教师作为实验的研究者,依据自己对幼儿细致的观察,对原有的假设进行确定、调整或推翻提出新的假设。此时,教学内容与教学物质条件是实验中的自变量,教师通过干预、控制这一自变量,从而帮助幼儿获得发展。幼儿是实验中的因变量,他一方面促使研究者采取一定的变革措施,另一方面也因自变量,也就是在一定的实验条件下而发生改变。 :
竺可桢(1890--1974),浙江上虞人。气象学家、地理学家、教育家。中国近代地理学和气象学的奠基者。领导创建了我国第一个气象研究所和首批气象台站,并在台风、季风、气候变迁、农业气候、物候、自然区划等方面有开拓性的研究。创建了我国第一个地学系,成为当时培养地学英才的摇篮。以求实精神领导浙江大学工作,培育了多方面的人才。长期领导中国科学院工作,积极倡导并组织和参加中国地学、生物学、天文学、自然资源综合考察及自然科学史研究等多方面工作,主编了《中国自然区划》、《中国自然地理》等丛书,是我国地理学和气象学界的一代宗师。
1、诗作引雁:同学们,有一种鸟,常常是文人墨客吟诗赋词入题的最爱,这种鸟很容易牵动人们的羁旅情思,令人睹鸟伤情、托鸟寄怀,从而留下许多浪漫、感人、富有诗意的作品,这种鸟就是秋寒南征、春暖北归的大雁。现在就让我们在这优美而略带忧伤情感的音乐中,一起回忆我们学过的有关大雁的优美诗句。学生汇报,教师展示。 征蓬出汉塞,归雁入胡天。——王维《使至塞上》 长风万里送秋雁,对此可以酣高楼。——李白《宣州谢眺楼饯别校书叔云》 乡书何处达?归雁洛阳边。——王湾《次北固山下》(思乡情怀) 塞下秋来风景异,衡阳雁去无留意。——范仲淹《渔家傲》 云中谁寄锦书来,雁字回时,月满西楼。—— 李清照《一剪梅》 2、引入课题:由此可见,中国人眼中的大雁是这样的富有诗情画意,是这样的充满浪漫色彩。那你想不想知道,外国人心中的大雁是怎样的吗?今天,就让我们跟随美国生态学家利奥波德一同走进大雁的世界。请大家打开课本111页,第十四课,大雁归来(出示课题和作者)
材料一:一切享有天然能力的人,显然都是平等的·当他们发挥各种动物技能的时候.以及运用他们理智的时候,他们是平等的。 ——伏尔泰材料二:要拥护那德先生就不得不反对孔教、礼法、贞洁、旧政治。要拥护那赛先生、便不得不反对旧艺术、旧宗教。要拥护德先生又要拥护赛先生,便不得不反对旧国粹和旧文学,……我们现在认定只有这两位先生。可以救治中国政治上、道德上、学术上、思想土的一切黑暗.若因为拥护那两位先生,一切政府的压迫、社会的攻击笑骂,就是断头流血,都不推辞 —陈独秀(1)根据材料一,概括伏尔泰的思想主张。(2分)这一思想主张分别体现在美国独立战 争和法国大革命的哪一文件中?(4分)
古之君民①者,仁义以治之,爱利以安之,忠信以导之,务除其灾,思致其福。此五帝三王之所以无敌也。身已终矣,而后世化之如神,其人事审②也。魏武侯之居中山也,问于李克曰:“吴之所以亡者,何也?”李克对曰:“骤战而骤胜。”武侯曰:“骤战而骤胜,国家之福也,其独以亡,何故?”对曰:“骤战则民罢③骤胜则主骄以骄主使罢民然而国不亡者天下少矣。骄则恣,恣则极物;罢则怨,怨则极虑。上下俱极,吴之亡犹晚。此夫差之所以自殁④于干隧⑤也。”
关于风筝的起源有很多说法,比如斗笠、树叶说,认为风筝的出现受到被风吹起的斗笠、树叶的启发,还有帆船、帐篷说,飞鸟说等。观点虽不统一,但风筝很早就出现在中国并无异议。《韩非子·外储说左上》中记载“墨子为木鸢,三年而成,飞一日而败。弟子曰:‘先生之巧,至能使木鸢飞。’”可见春秋战国时期已有风筝,不过为木质。随着造纸术的发展,从唐朝开始,纸糊的风筝逐渐兴起。当了宋代,放风筝已经成为当时人们喜爱的户外活动。明清时期,风筝的制作技艺、装饰技艺得到空前发展。至清朝道光年间达到鼎盛。
(一)完成校本部和莲溪校区的招生计划。暑假期间,充分利用微信公众号、微信朋友圈、视频号、抖音等各类宣传媒介,对招生进行宣传报道,营造良好的舆论氛围。开放咨询渠道,严格按照招生方案进行招生,确保圆满完成招生计划。(二)继续招纳贤才,进一步充实教师队伍。下半年将继续协助人社局、教体局开展校园招聘和社会招聘,广纳贤才,为学校的可持续发展菱定基础。(三)持续规范教学常规,提高教育教学质量一是抓好教学常规,教学常规的中心环节在课堂,力求课堂效果最大化。二是扎实做好尖子生培养工作。在尖子生培养方面,做到“精心”、“精品”,致力于寻求尖子生培养的良方。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。