提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

劳动合同解除协议书

  • 黑龙江省绥化市2019年中考语文真题试题(含解析)

    黑龙江省绥化市2019年中考语文真题试题(含解析)

    失掉了他信力,就会疑,一个转身,也许能够只相信了自己,倒是一条新生路,但不幸的是逐渐玄虚起来了。信"地"和"物",还是切实的东西,国联就渺茫,不过这还可以令人不久就省悟到依赖它的不可靠。一到求神拜佛,可就玄虚之至了,有益或是有害,一时就找不出分明的结果来,它可以令人更长久的麻醉着自己。

  • 湖南省张家界市2019年中考语文真题试题(含解析)

    湖南省张家界市2019年中考语文真题试题(含解析)

    读书不能死章句,需要思考一个“活”字。李白在《嘲鲁儒》中说:“鲁叟谈五经,白发死章句。问以经济策,茫如坠烟雾。”诗人对那些夸夸其谈而没有真才实学的“鲁叟”进行了辛辣的嘲讽。这些人谈起五经头头是道,问起经世济民之策却茫然无知。他们拿腔拿调,架子十足,却死于章句,不知时变。陆游《冬夜读书示子聿》中的观点,则更加值得那些“鲁叟”们深思。他说“纸上得来终觉浅,绝知此事要躬行”,言词朴素,满含哲理,诗中提出的理论与实践相结合的观点,至今犹有现实意义。只有在实践中才能得真知、悟真谛,真正学有所获,学有所用。

  • 小学数学人教版六年级下册《第三课解比例》教案说课稿

    小学数学人教版六年级下册《第三课解比例》教案说课稿

    (一)观图激趣、设疑导入 师:同学们,今天和老师一起完成一个知识大比拼的游戏,(PPT课件出示)准备好了吗?1、填空。15∶3=(  )∶(  )2∶3=(  )÷(  )0.2=(  )∶2=(  )÷62、根据比例的基本性质,把下列各比改写为乘法等式。3:8=15:40 x:4=1:2生:准备好了。师:现在我们开始。师:今天和老师学习怎样解比例。(板书课题:解比例)【设计意图】这种方法的导入,让学生更快、更集中注意力奔向主题,没有渲染的成分,简单实用。(二)探究新知1、自学解比例的意义师:阅读教材第42页,理解什么叫做解比例。生:求比例中的未知项叫做解比例。教师板书:求比例中的未知项叫做解比例。2、学习例2,应用比例的基本性质解比例。(1)出示例2的PPT课件。法国巴黎的埃菲尔铁塔高度约320 m。北京的世界公园里有一座埃菲尔铁塔的模型,它的高度与原塔高度的比是1∶10。这座模型高多少米?(2)理解题意,弄清模型的高度∶原塔高度=1∶10。师:同学们,你是怎样理解题目中1∶10的?生:题目中告诉我们1∶10是埃菲尔铁塔模型的高度与原塔高度的比。师:你能根据题意写出比例关系式吗?生:根据题意列比例关系式:模型的高度∶原塔高度=1∶10。师:这个关系式用数字该怎样表示?生:老师,在这个比例中我只知道三个数字,模型的高度的数量我不知道是几呀?师:这位同学观察得很仔细,哪位同学愿意帮助他解决这个问题?生:老师我想用字母x代替模型高度的数量,您看可以吗?师:好的,你的想法非常的好,也很正确!师:题目中告诉我们原塔高度是多少?生:320 m。

  • 北师大版初中数学八年级下册因式分解说课稿2篇

    北师大版初中数学八年级下册因式分解说课稿2篇

    情景感知概括运用设疑诱导动手操作合作交流尝试活动启发引导类比发现演练结合观察分析自主探索问题讨论利用尝试活动“我来当老师!”给学生提供设计问题的机会,培养他们实事求是的科学态度,勇于质疑、敢于创新的良好习惯及数学应用能力。例1、根据因式分解的概念,判断下列由左边到右边的变形,哪些是因式分解,哪些不是,为什么?通过罗列一些似是而非、容易产生错误的对象让学生辨析,促使他们认识概念的本质、确定概念的外延,从而形成良好的认知结构。例2:解答下列问题:(1)993-99能被99整除吗?能被98整除吗?能被100整除吗?(2)求代数式IR1+IR2+IR3的值,其中R1=19.2,R2=35.4,R3=32.4,I=2.5。让学生进一步体会用分解因式解决相关问题的简捷性。例3、填空:若x2+mx-n能分解成(x-2)(x-5),则m=,n=。

  • 人教版新课标小学数学五年级上册简易方程列方程解决问题说课稿

    人教版新课标小学数学五年级上册简易方程列方程解决问题说课稿

    设计意图:在游戏中巩固策略,提高学生学习兴趣,缓解学习疲劳。这个游戏的“揭密”过程关注方法的多样化,让学生体会列方程的策略和倒推策略之间的联系,把新旧知识进行了有机地融合,以培养学生思维的灵活性和发散性。四、课堂小结 提升策略提问学生:这节课你学会了应用什么策略解决实际问题?什么类型的题目适合用今天的策略解答?用这样的策略解决实际问题要注意什么?你还有别的收获吗?设计意图:突出主题,让学生总结本课的学习内容和学习重点;同时关注学生的个性发展,引导学生进行个性化的总结,体现不同层次的学生对课堂教学的领悟程度。五、课堂作业列方程解决实际问题,完成练习一4、5两题。设计意图:及时反馈学生学习情况,为后续教学研究收集宝贵的教学信息。

  • 人教版新课标小学数学五年级上册解简易方程说课稿2篇

    人教版新课标小学数学五年级上册解简易方程说课稿2篇

    一、本节内容在教材中所处的地位和作用:本单元是在学生理解了四则运算的意义和学会用字母表示数的基础上进行学习的。由学习用字母表示数到学习方程,是学生又一次接触初步的代数思想,这既是对所学四则运算意义和数量关系的进一步深化,又是为今后学习代数知识作准备,在知识衔接上具有重要作用。而这一节恰好在这一单元之中起着承上启下的作用。二、 教学目标:1、在具体的活动中,体验和理解等式的性质,会用等式的性质解简单的方程。2、结合有关黔金丝猴的数量情况,对学生进行保护珍稀动物方面的教育。3、培养学生的观察、讨论、推理、合作交流能力。三、重点难点:重点:解简单方程、用方程解决问题。因为方程知识与现实生活联系比较紧密,同时是今后学习代数知识的基础,所以把解简单方程作为本节重点。

  • 人教版新课标小学数学六年级下册解比例说课稿2篇

    人教版新课标小学数学六年级下册解比例说课稿2篇

    教学新课1.教学例2。出示例2。提问:你能用比例的基本性质来解比例,求出未知项x吗?自己先想一想,有没有办法做。再试着做做看。指名一人板演,其余学生做在练习本上。集体订正,让学生说说怎样想的,第一步的根据是什么,并向学生说明解比例的书写格式。2.教学例3。出示例题,让学生用比例形式读一读。让学生解答在自己的练习本上。指名口答解比例过程,老师板书。让学生说一说解比例的方法。指出:解比例一般按比例的基本性质写出积相等的式子,再求未知数x。3.教学“试一试”。提问已知数都是怎样的数。让学生自己解答。学生口答是怎样做的,老师板书。4.小结方法。提问:你认为根据比例的基本性质要怎样解比例?巩固练习1.做“练一练”。指名四人板演。其余学生分两组,每组两道题,做在练习本上。

  • 小学数学人教版六年级下册 《用比例解决问题》说课稿

    小学数学人教版六年级下册 《用比例解决问题》说课稿

    一、说教材《用比例解决问题》是义务教育课程标准实验教科书六年级下册第四单元比例的第三节比例的应用的一个子内容,这部分内容是在学生学习过比例的意义和基本性质,正比例和反比例意义基础上进行教学的,是比例知识的综合运用。教材在这部分内容中安排了例5和例6两个含正、反比例的问题,这类问题学生实际上已经接触过,只是用归一、归总的方法来解答,本节课要让学生从比例知识的角度寻找一种新的解决这种特殊数量关系的方法,从而丰富学生解决问题的策略。通过解答可以使学生进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,同时,由于解答时是根据正、反比例的意义来列方程,也可以巩固和加深对所学的简易方程的认识。所以这一教学内容既是对前面所学的正、反比例知识的巩固和应用,另外也是为中学数学、物理、化学学科应用比例知识解决一些问题做较好的准备。

  • 人教版高中语文必修3《文学作品的个性化解读》教案2篇

    人教版高中语文必修3《文学作品的个性化解读》教案2篇

    教学目标:1、了解文学作品解读的个性化及其原因。2、探讨个性化解读遵循的基本原则,合理解读文学作品。教学重点:引导学生关注文学现象,培养他们对文学作品理解的多重思维能力。教学难点:把握个性化的度。避免偏激的理解、过度的张扬所谓个性,严重歪曲文学作品。教学方法:导读、计论、合作探究。教学时间:一课时教学过程:一、创设情境、揭题导入:记得有这样一个故事:一个小孩在四岁就能背《登鹳雀楼》,可平时只有在大人的要求下,他才背出来。直到六岁的某一天,他父母带他去旅游,在他登陆上山顶时,竟然随口背出:“欲穷千里目,更上一层楼”来。这说明了什么?……(讨论)文学作品解读的个性化。二、探讨个性化解读的原因1、读者的差异导致解读的个性化A、同一作品,阅读的时间不同,解读不同。如上面的例子。如《从百草园到三味书屋》和《风筝》主题的多元化理解。“温故知新”,名作重读,不但有趣,而且有益。B、同一作品,不同读者,解读不同。

  • 人教版新课标小学数学三年级下册解决问题说课稿2篇

    人教版新课标小学数学三年级下册解决问题说课稿2篇

    (设计意图:建构主义学习观认为,知识不是被动接受的,而是由学习主体主动建构的。鉴于此,以上设计中,改变了以往的例题示范、讲解为主的教学方式,而是放手让学生自主探索,把发现知识的权利还给了学生,学生拥有了真正自主探索的空间,那些原本应有教师去“教”的知识被学生主动地建构,学生真正成为学习的主人。此外,通过比较、点题环节设计,突出了本课的重点,帮助学生明确了思维方向,有效地促进了学生知识的正迁移。)5.总结:虽然解答方法不同,但结果是一样的,都是用连乘的方法解决实际问题的,这就是我们今天学习的用两步连乘解决实际问题。(揭示课题)在解决这类的实际问题时我们应该怎样去思考?你有什么好的策略、方法介绍给大家吗?(关键就是要找到有直接关系的两个信息,看能求出什么,再一步步地解答。)

  • 人教版新课标小学数学三年级下册用连乘解决问题说课稿2篇

    人教版新课标小学数学三年级下册用连乘解决问题说课稿2篇

    3、小结比较观察三种方法,提出问题:为什么同一个问题有三种不同的解决方法?学生交流,教师小结:先解决的问题不同,选择的信息不同,图形拼摆的不同,解决的方法就不同,体现数形结合的思想。相同点是:无论思路如何,都是用连乘的方法解决问题。板书课题:解决问题——两步连乘应用题生活中还有很多这样的清况,想不想再尝试一下。(三)联系生活,优化方法,拓展深化,学校有特异为这些参加比赛的同学们购买了矿泉水,出示画面:共有20箱矿泉水,每箱24瓶,每瓶2元,请问学校共要支付多少钱?学生独立完成观察和思考的角度不同,先后选择的信息不同,所以同一道题有不同的解决方法。看来大家多用连乘的方法解决问题有了进一步的理解。生活中类似这样的问题很多,再来看一看:学校定好了水,付了钱,总得运回来吧.出示搬运车搬水到卡车上的画面:搬运车一次搬4摞,一摞3箱,一箱24瓶,请问搬运车一次能搬多少瓶?

  • 人教版新课标小学数学五年级上册列方程解应用题说课稿

    人教版新课标小学数学五年级上册列方程解应用题说课稿

    这节课的教学内容是九年义务教育六年制小学教科书数学第九册,P117——P119页复习、例1、例2、解方程的一般步骤、想一想、做一做及P120页T1-4。教学目的有以下三点:1、使学生掌握列方程解两步应用题的方法。2、总结列方程解应用题的一般步骤。3、培养学生分析数量关系的能力,提高学生在列方程解应用题时分析等理关系的能力。教学重点:分析应用题里的等量关系,会列方程解应用题。教学难点:分析应用题里的等量关系。教具准备:小黑板、写好题目的纸条等。这节课在学生已有的解方程、分析应用题数量关系等知识的基础上进行教学,使学生掌握列方程解应用题的方法,为以后学习更深入的知识打下基础,同时培养学生积极思考问题,热爱自然科学的品质。

  • 人教版新课标小学数学六年级下册用比例知识解决问题说课稿2篇

    人教版新课标小学数学六年级下册用比例知识解决问题说课稿2篇

    四、学以致用。1、用比例解决下列问题。五、课后延伸,深化拓展1、万老师骑摩托车从家到学校上班,6分钟行使了480米,照这样计算,他从家到学校共行使了20分钟。他家到学校的距离有多少米?2、今年元旦那天,小丽的妈妈到银川商城购物,发现有件保暖内衣质量不错,于是买了3件,共付了180元。回来后,邻居张大妈也想买几件,于是乘车到银川商城买同样的保暖内衣,她共付了300元,能买几件?3、解决课前提出的问题。(学校旗杆高一般由学校面积大小而定)提醒:同一时间、同一地点的身高和影长成正比例。根据实际情况,可以独立解答,也可以讨论解答。4、实践作业。1、一根粗细均匀的圆木,锯成了5段共用了326分钟,照这样计算,如果把这根圆木 锯成7段,需要多少分钟?2、请同学们利用上一题的原理测一测咱们学校的教学楼的高度。六、课堂总结。说说你的收获。评价自己的表现。教学反思:这节课上完之后我有以下三点感悟:( 一)课堂永远是无法完全预设的

  • 北师大初中数学九年级上册一元二次方程的解及其估算2教案

    北师大初中数学九年级上册一元二次方程的解及其估算2教案

    探索1:上节我们列出了与地毯的花边宽度有关的方程。地毯花边的宽x(m),满足方程 (8―2x)(5―2x)=18也就是:2x2―13x+11=0你能估算出地毯花边的宽度x吗?(1)x可能小于0吗?说说你的理由;_____________________________.(2)x可能大于4吗?可能大于2.5吗?为什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花边的宽x(m)是多少吗?还有其他求解方法吗?与同伴交流。探索2:梯子底端滑动的距离x(m)满足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑动距离x(m)的大致范围吗?(2)x的整数部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___进一步计算x x2+12x-15 所以 ___<x<___因此x 的整数部分是___,十分位是___.三、当堂训练:完成课本34页随堂练习四、学习体会:五、课后作业

  • 人教版新课标小学数学二年级下册解决问题教案2篇

    人教版新课标小学数学二年级下册解决问题教案2篇

    (1)提问:用自己的话说一说画面的内容。根据画面的内容编一道应用题。可先让学生自由编题,然后出示:面包房一共做了54个面包,第一队小朋友买了8个,第二队小朋友买了22个,现在剩下多少个?(2)全班同学读题后提问:题目的已知条件和问题分别是什么?根据“一共做了54个面包,第一队小朋友买了8个”这两个条件可以求什么?(第一队买后还剩下多少个)怎样列式?【54-8=46(个)】那要求还剩下多少个?又该怎样列式?【46-22=24(个)】谁能列一个综合算式?【54-8-22=24(个)】(列好后,要求学生说出每一步算式的意义)教师:大家想一想还有没有不同的想法?(鼓励学生从不同角度去思考问题)根据“第一队小朋友买了8个,第二队小朋友买了22个”可以求出什么问题?(两队一共买了多少个面包?)可以怎样列式?【8+22=30(个)】那要求还剩下多少个?又该怎样列式?【54-30=24(个)】同桌的同学互相讨论一下:如果写成一个算式,应该怎样列式?

  • 人教版新课标小学数学六年级上册用百分数解决问题说课稿3篇

    人教版新课标小学数学六年级上册用百分数解决问题说课稿3篇

    2、说说下面每个百分数的具体含义,是怎么求出来的?(哪两个数相比,把谁看作单位“1”)(1)某种菜籽的出油率是36%。(2)实际用电量占计划用电量的80%。(3)李家今年荔枝产量是去年的120%。二、新授1、根据数学信息提出问题:出示例2的情境图,让学生根据图中提供的条件提出用百分数解决的问题。(1)计划造林是实际造林的百分之几?(2)实际造林是计划造林的百分之几?(3)实际造林比计划造林增加百分之几?(4)计划早林比实际造林少百分之几?2、让学生先解决前两个问提。解决这类问题要先弄清楚哪两个数相比,哪个数是单位“1”,哪一个数与单位“1”相比。3、学生自主解决“实际早林比计划增加了百分之几”的问题。(1)分析数量关系,让学生自己尝试着用线段图表示出来。

  • 人教版高中历史必修3破解生命起源之谜说课稿2篇

    人教版高中历史必修3破解生命起源之谜说课稿2篇

    过度:诚如牛顿所说 我之所以能够取得今天的成就有很大原因是站在巨人的肩膀之上设问3:为什么这个时代选择了达尔文来完成这一伟大的发现呢?(达尔文的个人努力)补充材料:(1831年起,他随“贝格尔号”考察舰进行环球考察5年。考察结束后,在整理考察资料和实物标本的基础上,经过长期的研究,于1859年出版了《物种起源》一书,确立了生物的进化论说明达尔文的个人努力:学习、考察、学习、不迷信权威、勇于挑战、不断探索的精神,饱览群书,挑战和假设建立在大量的阅读和观察的基础上,科学实证等等。可以说达尔文身上有那个时代的一个浓缩的特征,当然他还有点运气,不过,机遇永远是为那些有准备的人提供的。)探究:达尔文“进化论”的影响思路引领:科学理论发展的影响可以从哪些方面分析?(经济、科学理论本身、人文学科、社会影响(对宗教,社会),对其他国家的影响)设问:达尔文进化论对1859年及以后的社会带来了非常深远的影响。有哪些影响呢?①挑战封建神学的神创世,促进人类认识的飞跃

  • 人教版高中历史必修3破解生命起源之谜教案2篇

    人教版高中历史必修3破解生命起源之谜教案2篇

    设问:你怎么看待这个问题的?(这是达尔文没有想到的,是有人利用了达尔文的学说,科学应该与其区分开来,但是科学家在研究时,既要做到为追求真理不断探索,又要有一定的人文精神,比如我们只有以人为本,才能找到解决当今社会面临的诸如环保、战争、饥荒等问题的途径,才能构建防止核物理技术、克隆技术、信息技术、生物技术、太空技术等可能对人类造成不可逆转的破坏作用的思想基础、决策机制和社会条件。更重要的是社会和国家应该对此有足够的认识,正因为此,所以现在当一项科学发明出台后,就会有一些法律出台,限制其可能的非人道用途。但是这些影响应不成为我们进行科学探究的阻碍。)(3)科学与宗教的斗争设计意图:再次引导学生认识,科学的探索永无止境,同时也再次认识宗教和科学理论产生的原因。材料1:1972年,美国加利福尼亚教育部竟明文规定,中学生物学课本除进化论外,必须还有神创论的内容,而且两者的页数要各占一半。

  • 人教A版高中数学必修一函数的零点与方程的解教学设计(1)

    人教A版高中数学必修一函数的零点与方程的解教学设计(1)

    本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.5.1节《函数零点与方程的解》,由于学生已经学过一元二次方程与二次函数的关系,本节课的内容就是在此基础上的推广。从而建立一般的函数的零点概念,进一步理解零点判定定理及其应用。培养和发展学生数学直观、数学抽象、逻辑推理和数学建模的核心素养。1、了解函数(结合二次函数)零点的概念;2、理 解函数零点与方程的根以及函数图象与x轴交点的关系,掌握零点存在性定理的运用;3、在认识函数零点的过程中,使学生学会认识事物的特殊性与一般性之间的关系,培养数学数形结合及函数思想; a.数学抽象:函数零点的概念;b.逻辑推理:零点判定定理;c.数学运算:运用零点判定定理确定零点范围;d.直观想象:运用图形判定零点;e.数学建模:运用函数的观点方程的根;

  • 人教A版高中数学必修一函数的零点与方程的解教学设计(2)

    人教A版高中数学必修一函数的零点与方程的解教学设计(2)

    本章通过学习用二分法求方程近似解的的方法,使学生体会函数与方程之间的关系,通过一些函数模型的实例,让学生感受建立函数模型的过程和方法,体会函数在数学和其他学科中的广泛应用,进一步认识到函数是描述客观世界变化规律的基本数学模型,能初步运用函数思想解决一些生活中的简单问题。1.了解函数的零点、方程的根与图象交点三者之间的联系.2.会借助零点存在性定理判断函数的零点所在的大致区间.3.能借助函数单调性及图象判断零点个数.数学学科素养1.数学抽象:函数零点的概念;2.逻辑推理:借助图像判断零点个数;3.数学运算:求函数零点或零点所在区间;4.数学建模:通过由抽象到具体,由具体到一般的思想总结函数零点概念.重点:零点的概念,及零点与方程根的联系;难点:零点的概念的形成.

上一页123...114115116117118119120121122123124125下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!