4.写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果.(1)一个袋中装有8个红球,3个白球,从中任取5个球,其中所含白球的个数为X.(2)一个袋中有5个同样大小的黑球,编号为1,2,3,4,5,从中任取3个球,取出的球的最大号码记为X.(3). 在本例(1)条件下,规定取出一个红球赢2元,而每取出一个白球输1元,以ξ表示赢得的钱数,结果如何?[解] (1)X可取0,1,2,3.X=0表示取5个球全是红球;X=1表示取1个白球,4个红球;X=2表示取2个白球,3个红球;X=3表示取3个白球,2个红球.(2)X可取3,4,5.X=3表示取出的球编号为1,2,3;X=4表示取出的球编号为1,2,4;1,3,4或2,3,4.X=5表示取出的球编号为1,2,5;1,3,5;1,4,5;2,3,5;2,4,5或3,4,5.(3) ξ=10表示取5个球全是红球;ξ=7表示取1个白球,4个红球;ξ=4表示取2个白球,3个红球;ξ=1表示取3个白球,2个红球.
3.下结论.依据均值和方差做出结论.跟踪训练2. A、B两个投资项目的利润率分别为随机变量X1和X2,根据市场分析, X1和X2的分布列分别为X1 2% 8% 12% X2 5% 10%P 0.2 0.5 0.3 P 0.8 0.2求:(1)在A、B两个项目上各投资100万元, Y1和Y2分别表示投资项目A和B所获得的利润,求方差D(Y1)和D(Y2);(2)根据得到的结论,对于投资者有什么建议? 解:(1)题目可知,投资项目A和B所获得的利润Y1和Y2的分布列为:Y1 2 8 12 Y2 5 10P 0.2 0.5 0.3 P 0.8 0.2所以 ;; 解:(2) 由(1)可知 ,说明投资A项目比投资B项目期望收益要高;同时 ,说明投资A项目比投资B项目的实际收益相对于期望收益的平均波动要更大.因此,对于追求稳定的投资者,投资B项目更合适;而对于更看重利润并且愿意为了高利润承担风险的投资者,投资A项目更合适.
对于离散型随机变量,可以由它的概率分布列确定与该随机变量相关事件的概率。但在实际问题中,有时我们更感兴趣的是随机变量的某些数字特征。例如,要了解某班同学在一次数学测验中的总体水平,很重要的是看平均分;要了解某班同学数学成绩是否“两极分化”则需要考察这个班数学成绩的方差。我们还常常希望直接通过数字来反映随机变量的某个方面的特征,最常用的有期望与方差.二、 探究新知探究1.甲乙两名射箭运动员射中目标靶的环数的分布列如下表所示:如何比较他们射箭水平的高低呢?环数X 7 8 9 10甲射中的概率 0.1 0.2 0.3 0.4乙射中的概率 0.15 0.25 0.4 0.2类似两组数据的比较,首先比较击中的平均环数,如果平均环数相等,再看稳定性.假设甲射箭n次,射中7环、8环、9环和10环的频率分别为:甲n次射箭射中的平均环数当n足够大时,频率稳定于概率,所以x稳定于7×0.1+8×0.2+9×0.3+10×0.4=9.即甲射中平均环数的稳定值(理论平均值)为9,这个平均值的大小可以反映甲运动员的射箭水平.同理,乙射中环数的平均值为7×0.15+8×0.25+9×0.4+10×0.2=8.65.
课前小测1.思考辨析(1)若Sn为等差数列{an}的前n项和,则数列Snn也是等差数列.( )(2)若a1>0,d<0,则等差数列中所有正项之和最大.( )(3)在等差数列中,Sn是其前n项和,则有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在项数为2n+1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故选B项.]3.等差数列{an}中,S2=4,S4=9,则S6=________.15 [由S2,S4-S2,S6-S4成等差数列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知数列{an}的通项公式是an=2n-48,则Sn取得最小值时,n为________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有负项的和最小,即n=23或24.]二、典例解析例8.某校新建一个报告厅,要求容纳800个座位,报告厅共有20排座位,从第2排起后一排都比前一排多两个座位. 问第1排应安排多少个座位?分析:将第1排到第20排的座位数依次排成一列,构成数列{an} ,设数列{an} 的前n项和为S_n。
1.判断正误(正确的打“√”,错误的打“×”)(1)函数f (x)在区间(a,b)上都有f ′(x)<0,则函数f (x)在这个区间上单调递减. ( )(2)函数在某一点的导数越大,函数在该点处的切线越“陡峭”. ( )(3)函数在某个区间上变化越快,函数在这个区间上导数的绝对值越大.( )(4)判断函数单调性时,在区间内的个别点f ′(x)=0,不影响函数在此区间的单调性.( )[解析] (1)√ 函数f (x)在区间(a,b)上都有f ′(x)<0,所以函数f (x)在这个区间上单调递减,故正确.(2)× 切线的“陡峭”程度与|f ′(x)|的大小有关,故错误.(3)√ 函数在某个区间上变化的快慢,和函数导数的绝对值大小一致.(4)√ 若f ′(x)≥0(≤0),则函数f (x)在区间内单调递增(减),故f ′(x)=0不影响函数单调性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用导数判断下列函数的单调性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因为f(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函数在R上单调递增,如图(1)所示
一、 问题导学前面两节所讨论的变量,如人的身高、树的胸径、树的高度、短跑100m世界纪录和创纪录的时间等,都是数值变量,数值变量的取值为实数.其大小和运算都有实际含义.在现实生活中,人们经常需要回答一定范围内的两种现象或性质之间是否存在关联性或相互影响的问题.例如,就读不同学校是否对学生的成绩有影响,不同班级学生用于体育锻炼的时间是否有差别,吸烟是否会增加患肺癌的风险,等等,本节将要学习的独立性检验方法为我们提供了解决这类问题的方案。在讨论上述问题时,为了表述方便,我们经常会使用一种特殊的随机变量,以区别不同的现象或性质,这类随机变量称为分类变量.分类变量的取值可以用实数表示,例如,学生所在的班级可以用1,2,3等表示,男性、女性可以用1,0表示,等等.在很多时候,这些数值只作为编号使用,并没有通常的大小和运算意义,本节我们主要讨论取值于{0,1}的分类变量的关联性问题.
温故知新 1.离散型随机变量的定义可能取值为有限个或可以一一列举的随机变量,我们称为离散型随机变量.通常用大写英文字母表示随机变量,例如X,Y,Z;用小写英文字母表示随机变量的取值,例如x,y,z.随机变量的特点: 试验之前可以判断其可能出现的所有值,在试验之前不可能确定取何值;可以用数字表示2、随机变量的分类①离散型随机变量:X的取值可一、一列出;②连续型随机变量:X可以取某个区间内的一切值随机变量将随机事件的结果数量化.3、古典概型:①试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等。二、探究新知探究1.抛掷一枚骰子,所得的点数X有哪些值?取每个值的概率是多少? 因为X取值范围是{1,2,3,4,5,6}而且"P(X=m)"=1/6,m=1,2,3,4,5,6.因此X分布列如下表所示
1.对称性与首末两端“等距离”的两个二项式系数相等,即C_n^m=C_n^(n"-" m).2.增减性与最大值 当k(n+1)/2时,C_n^k随k的增加而减小.当n是偶数时,中间的一项C_n^(n/2)取得最大值;当n是奇数时,中间的两项C_n^((n"-" 1)/2) 与C_n^((n+1)/2)相等,且同时取得最大值.探究2.已知(1+x)^n =C_n^0+C_n^1 x+...〖+C〗_n^k x^k+...+C_n^n x^n 3.各二项式系数的和C_n^0+C_n^1+C_n^2+…+C_n^n=2n.令x=1 得(1+1)^n=C_n^0+C_n^1 +...+C_n^n=2^n所以,(a+b)^n 的展开式的各二项式系数之和为2^n1. 在(a+b)8的展开式中,二项式系数最大的项为 ,在(a+b)9的展开式中,二项式系数最大的项为 . 解析:因为(a+b)8的展开式中有9项,所以中间一项的二项式系数最大,该项为C_8^4a4b4=70a4b4.因为(a+b)9的展开式中有10项,所以中间两项的二项式系数最大,这两项分别为C_9^4a5b4=126a5b4,C_9^5a4b5=126a4b5.答案:1.70a4b4 126a5b4与126a4b5 2. A=C_n^0+C_n^2+C_n^4+…与B=C_n^1+C_n^3+C_n^5+…的大小关系是( )A.A>B B.A=B C.A<B D.不确定 解析:∵(1+1)n=C_n^0+C_n^1+C_n^2+…+C_n^n=2n,(1-1)n=C_n^0-C_n^1+C_n^2-…+(-1)nC_n^n=0,∴C_n^0+C_n^2+C_n^4+…=C_n^1+C_n^3+C_n^5+…=2n-1,即A=B.答案:B
严格按照中央要求,高质量地梳理问题清单,精准实施专项整治,切实把ZT教育做深做实做出成效。各级D组织、广大D员干部将始终紧扣“学思想、强D性、重实践、建新功”的总要求,学习好运用好新时代中国特色社会主义思想的世界观和方法论,不断推动高质量发展取得新成效。一是夯实理论根基,把理论学习作为终身“必修课”。完整、准确、全面领会新时代中国特色社会主义思想,在深学细照笃行中提高理论素养、坚定理想信念、升华觉悟境界、增强能力本领。二是坚持读原著、学原文、悟原理,深刻领悟精髓要义。在学深、学透、学懂的基础上,将各领域、各方面重大思想理论观点作为一个整体来把握,把孤立的认识变为系统的认识,把感性认识上升为理性认识,不断提高素质能力,学以致用、学有所成。三是坚持深化学习和见诸行动、指导实践、推动发展相统一。
二、学习新知1.正方形的定义在这一环节中,学生很容易犯的一个错误就是条件重复。这时我会引导学生从画图入手,提示他们:你能不能减少条件画出正方形呢?这一环节中我的观点是正方形的定义不是唯一的。我们可以从不同的角度来总结,只要合理就加以肯定。比如当学生总结出:四个角都是直角,四条边都相等的四边形是正方形。这时可以提醒学生是不是一定要四条边都相等,减少边的条数可以画出来吗?角的个数可以减少吗?鼓励学生动手试一试。通过动手画图可以很容易的得到正方形的一个定义:三个角都是直角,一组邻边都相等的四边形是正方形。通过小组讨论的形式来完成这一环节的设置。鼓励学生利用现有的材料继续构造正方形。从另一个角度总结正方形的定义。
1、听音乐熟悉旋律,整体感受歌曲。2放音乐,学生跟着老师原地按节奏踏步。有没有我们比较熟悉的乐句?3、你从刚才的歌曲中都听到了些什么内容?(教师大屏幕出示本课歌词。老师用响板把节奏打出来,学生朗读,注意读出强和弱。)4、老师发现同学们都等的不耐烦了,那就让我们随着音乐小声的唱起来吧,注意找一找有没有我们熟悉的地方?大家能不能一起唱唱?(老师弹琴,学生歌唱,注意唱的要优美。)5、歌曲处理教师启发:现在这首歌曲大家都比较熟悉,都会唱了,但是我们还是要应该把它唱得更好,你觉得怎样才能唱得更好听呢!(强弱、欢快的情绪,一、三句节奏比较紧凑,表现了小朋友们去郊游的高兴心情。第二句节奏比较舒展,表现了美丽的大自然景色。)在学生演唱歌曲的第二部分时,指导学生提前做好准备吸气,但是不要夸张的动作。慢慢吐气去唱好歌曲中的长音。注意保持气息声音不要抖。)
视频把乐曲表现的意境通过直观的图像展示,让学生进一步体会如诗如画的意境,整体感受乐曲的情绪。视频资料只是作者对这首乐曲的个人感受,所以放在最后让学生体验,而不是放在初听时用,目的在于不把学生的思维固定,放在教学阶段的最后可以让学生感受一下人们眼中的《春之歌》,开拓视野。三、拓展1.请小朋友演奏《春之歌》(《选自〈汤普森钢琴基础教程〉》)2.欣赏门德尔松的另一首无词歌《快乐的农夫》3.展示描写春天的音乐作品。四、课堂小结教学反思在充分发挥学生想象能力下,合理运用音像资料,丰富课堂、拓展视野。在本课中用丰富的音像资料,让学生了解《春之歌》以及其优美的旋律带给人们的视听享受,从而知道门德尔松的音乐成就。音乐欣赏重在对音乐作品的想象和理解,所以从情绪感知出发,通过各种音乐实践活动,运用已经掌握的课堂乐器演奏技巧,与校本教材相结合,鉴赏音乐作品,学生能很容易地记住主题旋律、得到成功的喜悦。
设计意图:这是本课的重点内容。先让学生装扮风雨声赞美柳树,在这个过程中学会歌曲旋律.采用打击乐器或小手为歌曲伴奏,使学生更生动的表现歌曲的美感,丰富了审美体验。让学生在听、读、唱、动等情感体验活动中感受音乐、欣赏音乐和表现音乐。③学唱二声部设计意图:学生在学会歌曲后,欣赏录音注意二声部进入的位置,让学生先唱一声部,教师示范唱二声部.然后利用多种形式进行合唱练习。让学生感性认识音乐要素变化,在音乐中起到的作用,增加了知识性和趣味性,同时达到巩固歌曲的目的。6、律动表演,情感升华。在教学的尾声教师创设教学情景,启发学生植树,请两位同学模拟植树场景,其余的学生以他们为中心围成圆圈,用最好听的歌声和最优美的动作来祝福小树苗快快长高。设计意图:这是本课情感态度价值观目标的拓展。通过课堂上的植树活动,潜移默化地教育学生“爱护树木,关注环保”,从我做起,从现在做起。
第四环节:播放视频《三只小猪》。增加幼儿对故事的印象,并讨论:你们觉得故事中的小黑猪是怎么样一只小猪?(是一只勤劳、勇敢、聪明的小猪)如果你盖房子,会选择什么材料盖?建议幼儿盖结实的砖房子,要做一个不怕苦、不怕累的孩子。第五环节:表演《三只小猪》。选出扮演角色,分发头饰。运用多媒体课件布置故事背景,教师指导。最后教师再围绕活动重点和活动方法进行最后的归纳和总结。在归纳总结的基础上,我又设计了活动延伸:小朋友们真棒!今天都学会了讲这个故事。那晚上回家的时候就唱给爸爸妈妈听一听哦。请爸爸妈妈监督我们做一个勤劳、勇敢的孩子!各位老师:俗话说“教无定法,贵在得法”,能使一个活动取得成功,需要不断地尝试和探索,我会在以后的教学实践中,在新的教育理念的熏陶下,和孩子们一起探索,一起成长。望各位老师给予批评指正。
(意图:在这一环节中引导学生展开想象,进行小小词作家的歌词创编活动,舞创编、打击乐伴奏等活动发展学生的想象,激活学生的思维和创造力。使学生在主动参与中展现自己的个性和创造才能,体现音乐学科注重个性发展的理念)五、总结下课、情感延伸。同学们,愉快的新疆之旅就要结束了,小朋友们走进了新疆,并学唱了《我爱雪莲花》这首歌,我希望同学们你们也要象小布依拉一样,以解放军叔叔为榜样,好好学习,将来为保卫祖国,建设祖国贡献力量!大家有没有信心啊?好,同学们已经立下了誓言,我相信我们的国家一定会在你们这一代的建设下更加美丽、富饶总之通过本节课教育学使我觉得作为一名新形式下的音乐教师,不但要有扎实的基本功,还要在音乐课堂上下功夫。不断创设情境,学生一旦真正进入了音乐的意境,就会用非常自然的歌唱来赞美它,而这种自然的歌唱,是比世界上首屈 一指的小提琴还要动人心弦的。让音乐课成为学生的快乐学堂!
4、再听歌曲。(了解歌词内容)师:待会儿听清楚谜面的同学请举手示意一下。(利用多媒体课件,给学生播放歌词中所演唱的内容,文字与图片相结合)教师与学生一起分析歌词内容。(有问有答的谜语)师:对,以问答对唱形式演唱歌曲是民歌的一个特点。5、请学生小声随音乐哼唱歌曲旋律。6、用打击乐器为歌曲伴奏。(四)拓展教学。(10分钟)1、创编歌词。(意图:进一步了解一问一答的对歌演唱形式)师:我们现在一起来用谜语创编出新的的歌词,保持歌曲原有的节奏与结构。(学生分组创编,之后分组展示。)(教师可做一定的提示,教师给出谜底,请学生编出谜面来。)2、了解云南。(意图:通过了解云南歌舞、风俗,让学生有更广阔的视野,更加了解民族文化、了解民族音乐)师:云南的民歌不仅好听,那里的自然景色、人们的舞蹈都很美!
此环节为本课教学最后一个环节,在引导学生在感受歌曲情绪,理解歌曲内容、风格特点的基础上,通过运用综合艺术的教学手段,让学生听中创,创中编,于创编中丰富学生在其情感体验,提高其对音乐的表现力。(五)课堂小结:这节课我们感受到了歌曲欢快、活泼的情绪,体会到了劳动创造幸福的真谛。希望同学们能用自己的双手创造出自己的幸福生活。(六)听音乐出教室这一环节与开头听音乐进教室互相呼应,使课堂气氛活跃,让学生在兴趣盎然中学会了歌曲,全面实现了本课时的教学目标。六、效果预测:本节课的教学中,利用多媒体制作的课件,从视觉、听觉、感觉去理解歌曲,发挥他们的想象力.看中听,听中辨,练中听,听中做,听中创,创中编达到自己领悟,发挥独创精神.运用了模唱法、听唱法、学唱法去陶冶他们的情操。
歌曲处理部分我采取了对比式的教学方法,由于此曲有两遍“悄悄地、悄悄地、悄悄地”,而前后两遍的旋律是有变化的,相似之中又有不同之处,在演唱过程中我单独拿出这两个旋律进行视唱对比,让学生自主听辨,这样帮助孩子更好、更准确的演唱。这一环节我主要采取探究式和对比式两种教学方法。我的第四环节是“动”情——感动之情,首先在欣赏前我把老师比作米兰,然后提出疑问“为什么把老师比作米兰而不是蜡烛、春蚕呢?”让孩子们在歌曲中找到答案。孩子们聆听这首歌曲后,我问学生“你把老师比作什么?为什么呢?”探索学生的心声,然后在师与生的相互探讨中让孩子们懂得一支粉笔写就人生的轨迹;两鬓染霜谱成人生绚丽的乐章;三尺讲台留下人生的灿烂和辉煌!这就是我们可敬的老师。最后我朗诵了一首配乐诗朗诵歌颂老师,让孩子和我的心中都漾起那份沉甸甸的师母般的爱。
有感情就有想象,从而形成创造思维。老师可依据本课的内容及情绪鼓励引导学生进行即兴创编活动。充分挖掘学生的潜力。创编一些与课本情绪一致的节奏、诗歌、故事、游戏、音乐表演等。(创编的内容和形式可以根据教材而定)根据学生的个性差异对每一位同学都应该多关心多鼓励。构建和谐团结民主的氛围。引导学生积极讨论共同参与,培养学生乐观的学习态度和友爱的精神。锻炼合作与协调能力,增进群体意识,培养团队精神。第五环节:自评互评培养鉴赏力本课的教学评价我是以表扬和鼓励为主,随时引导学生在音乐活动中开展自评互评和老师的随堂评价,以提高学生的乐感和审美能力。我评价他们的重点是能否积极自信的参与音乐表现、能否与其他的同学协作配合、在课堂小结时我还安排了学生谈一谈这节课的感想如:这节课你学到了什么?歌曲中你最喜欢那一句?在课堂上对那些有创意的学生我还及时的发给他们小奖品。小结:以上是本课的总阐述,不到之处请评委指正。
4.合作表演。(1)组内合作:组内成员合作。各组同时进行全故事的预演。(2)组外合作:组与组合作,进行分段表演,即各组分别表演某个场景,共同合作表演整个故事。设计亮点:这一环节虽是表现环节,但也是再感受、再创造的环节。它通过演的方式加深学生对音乐的理解,起到了以演代听的效果。学生参加或观看表演时,便对全曲进行了整体欣赏。这就解决了因音乐较长而学生注意力短的问题。在表现方面,注重组与组、组员之间的分工合作。四)归纳总结课外延伸同学们:《彼得与狼》交响童话,它给人们的启示是:团结就是力量,机智勇敢的去斗争,就能够战胜凶恶的敌人。这一童话故事受到世界各个地区的小朋友喜爱。因此,被制作成不同的剧目进行演绎,请同学们在课后欣赏不同剧目的《彼得与狼》。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。