探究点二:列分式方程某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x个,根据题意可列分式方程为()A.20x+10x+4=15 B.20x-10x+4=15C.20x+10x-4=15 D.20x-10x-4=15解析:设原计划每天生产x个,则实际每天生产(x+4)个,根据题意可得等量关系:(原计划20天生产的零件个数+10个)÷实际每天生产的零件个数=15天,根据等量关系列出方程即可.设原计划每天生产x个,则实际每天生产(x+4)个,根据题意得20x+10x+4=15.故选A.方法总结:此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,列出方程.三、板书设计1.分式方程的概念2.列分式方程本课时的教学以学生自主探究为主,通过参与学习的过程,让学生感受知识的形成与应用的价值,增强学习的自觉性,体验类比学习思想的重要性,然后结合生活实际,发现数学知识在生活中的广泛应用,感受数学之美.
解:(1)∵点(1,5)在反比例函数y=kx的图象上,∴5=k1,即k=5,∴反比例函数的解析式为y=5x.又∵点(1,5)在一次函数y=3x+m的图象上,∴5=3+m,即m=2,∴一次函数的解析式为y=3x+2;(2)由题意,联立y=5x,y=3x+2.解得x1=1,y1=5或x2=-53,y2=-3.∴这两个函数图象的另一个交点的坐标为(-53,-3).三、板书设计反比例函数的图象形状:双曲线位置当k>0时,两支曲线分别位于 第一、三象限内当k<0时,两支曲线分别位于 第二、四象限内画法:列表、描点、连线(描点法)通过学生自己动手列表、描点、连线,提高学生的作图能力.理解函数的三种表示方法及相互转换,对函数进行认识上的整合,逐步明确研究函数的一般要求.反比例函数的图象具体展现了反比例函数的整体直观形象,为学生探索反比例函数的性质提供了思维活动的空间.
把解集在数轴上表示出来,并将解集中的整数解写出来.解析:分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集,再找出解集范围内的整数即可.解:x+23<1 ①,2(1-x)≤5 ②,由①得x<1,由②得x≥-32,∴不等式组的解集为-32≤x<1.则不等式组的整数解为-1,0.方法总结:此题主要考查了一元一次不等式组的解法,解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.三、板书设计一元一次不等式组概念解法不等式组的解集利用数轴确定解集利用口诀确定解集解一元一次不等式组是建立在解一元一次不等式的基础之上.解不等式组时,先解每一个不等式,再确定各个不等式组的解集的公共部分.
(3)∵AD=4,DE=1,∴AE=42+12=17.∵对应点到旋转中心的距离相等且F是E的对应点,∴AF=AE=17.(4)∵∠EAF=90°(旋转角相等)且AF=AE,∴△EAF是等腰直角三角形.【类型二】 旋转的性质的运用如图,点E是正方形ABCD内一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3则∠BE′C=________度.解析:连接EE′,由旋转性质知BE=BE′,∠EBE′=90°,∴△BEE′为等腰直角三角形且∠EE′B=45°,EE′=22.在△EE′C中,EE′=22,E′C=1,EC=3,由勾股定理逆定理可知∠EE′C=90°,∴∠BE′C=∠BE′E+∠EE′C=135°.三、板书设计1.旋转的概念将一个图形绕一个顶点按照某个方向转动一个角度,这样的图形运动称为旋转.2.旋转的性质一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角,对应线段相等,对应角相等.
方法总结:已知解集求字母系数的值,通常是先解含有字母的不等式,再利用解集唯一性列方程求字母的值.解题过程体现了方程思想.三、板书设计1.一元一次不等式的概念2.解一元一次不等式的基本步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)两边都除以未知数的系数.本节课通过类比一元一次方程的解法得到一元一次不等式的解法,让学生感受到解一元一次不等式与解一元一次方程只是在两边都除以未知数的系数这一步时有所不同.如果这个系数是正数,不等号的方向不变;如果这个系数是负数,不等号的方向改变.这也是这节课学生容易出错的地方.教学时要大胆放手,不要怕学生出错,通过学生犯的错误引起学生注意,理解产生错误的原因,以便在以后的学习中避免出错.
∵EG⊥FH,∴∠BOE+∠BOH=90°,∴∠COH=∠BOE,∴△CHO≌△BEO,∴OE=OH.同理可证:OE=OF=OG,∴OE=OF=OG=OH.又∵EG⊥FH,∴四边形EFGH为菱形.∵EO+GO=FO+HO,即EG=HF,∴四边形EFGH为正方形.方法总结:对角线互相垂直平分且相等的四边形是正方形.探究点二:正方形、菱形、矩形与平行四边形之间的关系填空:(1)对角线________________的四边形是矩形;(2)对角线____________的平行四边形是矩形;(3)对角线__________的平行四边形是正方形;(4)对角线________________的矩形是正方形;(5)对角线________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法总结:从对角线上分析特殊四边形之间的关系应充分考虑特殊四边形的性质与判别,防止混淆.菱形、矩形、正方形都是平行四边形,且是特殊的平行四边形,特殊之处在于:矩形是有一个角为直角的平行四边形;菱形是有一组邻边相等的平行四边形;而正方形是兼具两者特性的更特殊的平行四边形,它既是矩形,又是菱形.
故线段d的长度为94cm.方法总结:利用比例线段关系求线段长度的方法:根据线段的关系写出比例式,并把它作为相等关系构造关于要求线段的方程,解方程即可求出线段的长.已知三条线段长分别为1cm,2cm,2cm,请你再给出一条线段,使得它的长与前面三条线段的长能够组成一个比例式.解析:因为本题中没有明确告知是求1,2,2的第四比例项,因此所添加的线段长可能是前三个数的第四比例项,也可能不是前三个数的第四比例项,因此应进行分类讨论.解:若x:1=2:2,则x=22;若1:x=2:2,则x=2;若1:2=x:2,则x=2;若1:2=2:x,则x=22.所以所添加的线段的长有三种可能,可以是22cm,2cm,或22cm.方法总结:若使四个数成比例,则应满足其中两个数的比等于另外两个数的比,也可转化为其中两个数的乘积恰好等于另外两个数的乘积.
解:∵CF平分∠ACB,DC=AC,∴CF是△ACD的中线,即F是AD的中点.∵点E是AB的中点,∴EF∥BD,且EFBD=12.∴∠B=∠AEF,∠ADB=∠AFE,∴△AEF∽△ABD.∴S△AEFS△ABD=(12)2=14.∵S△AEF=S△ABD-S四边形BDFE=S△ABD-6,∴S△ABD-6S△ABD=14.∴S△ABD=8,即△ABD的面积为8.易错提醒:在运用“相似三角形的面积比等于相似比的平方”这一性质时,同样要注意是对应三角形的面积比,在本题中不要犯由EF:BD=1:2得S△AEF:S△ABD=1:2,或S△AEF:S四边形BDFE=1:2之类的错误.三、板书设计相似三角形的周长和面积之比:相似三角形的周长比等于相似比,面积比等于相似比的平方.经历相似三角形的性质的探索过程,培养学生的探索能力.通过交流、归纳,总结相似三角形的周长比、面积比与相似比的关系,体验化归思想.运用相似多边形的周长比,面积比解决实际问题,训练学生的运用能力,增强学生对知识的应用意识.
∴OE=OF=OG=OH.又∵EG⊥FH,∴四边形EFGH为菱形.∵EO+GO=FO+HO,即EG=HF,∴四边形EFGH为正方形.方法总结:对角线互相垂直平分且相等的四边形是正方形.探究点二:正方形、菱形、矩形与平行四边形之间的关系填空:(1)对角线________________的四边形是矩形;(2)对角线____________的平行四边形是矩形;(3)对角线__________的平行四边形是正方形;(4)对角线________________的矩形是正方形;(5)对角线________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法总结:从对角线上分析特殊四边形之间的关系应充分考虑特殊四边形的性质与判别,防止混淆.菱形、矩形、正方形都是平行四边形,且是特殊的平行四边形,特殊之处在于:矩形是有一个角为直角的平行四边形;菱形是有一组邻边相等的平行四边形;而正方形是兼具两者特性的更特殊的平行四边形,它既是矩形,又是菱形.
1.了解扇形的概念,理解n°的圆心角所对的弧长和扇形面积的计算公式并熟练掌握它们的应用;(重点)2.通过复习圆的周长、圆的面积公式,探索n°的圆心角所对的弧长l=nπR180和扇形面积S扇=nπR2360的计算公式,并应用这些公式解决一些问题.(难点)一、情境导入如图是圆弧形状的铁轨示意图,其中铁轨的半径为100米,圆心角为90°.你能求出这段铁轨的长度吗(π 取3.14)?我们容易看出这段铁轨是圆周长的14,所以铁轨的长度l≈2×3.14×1004=157(米). 如果圆心角是任意的角度,如何计算它所对的弧长呢?二、合作探究探究点一:弧长公式【类型一】 求弧长如图,某厂生产横截面直径为7cm的圆柱形罐头盒,需将“蘑菇罐头”字样贴在罐头侧面.为了获得较佳视觉效果,字样在罐头盒侧面所形成的弧的度数为90°,则“蘑菇罐头”字样的长度为()
解析:(1)把点A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,根据对称轴是x=-3,求出b=6,即可得出答案;(2)根据CD∥x轴,得出点C与点D关于x=-3对称,根据点C在对称轴左侧,且CD=8,求出点C的横坐标和纵坐标,再根据点B的坐标为(0,5),求出△BCD中CD边上的高,即可求出△BCD的面积.解:(1)把点A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,∴c-4b=-19.∵对称轴是x=-3,∴-b2=-3,∴b=6,∴c=5,∴抛物线的解析式是y=x2+6x+5;(2)∵CD∥x轴,∴点C与点D关于x=-3对称.∵点C在对称轴左侧,且CD=8,∴点C的横坐标为-7,∴点C的纵坐标为(-7)2+6×(-7)+5=12.∵点B的坐标为(0,5),∴△BCD中CD边上的高为12-5=7,∴△BCD的面积=12×8×7=28.方法总结:此题考查了待定系数法求二次函数的解析式以及二次函数的图象和性质,注意掌握数形结合思想与方程思想的应用.
如图所示,要用长20m的铁栏杆,围成一个一面靠墙的长方形花圃,怎么围才能使围成的花圃的面积最大?如果花圃垂直于墙的一边长为xm,花圃的面积为ym2,那么y=x(20-2x).试问:x为何值时,才能使y的值最大?二、合作探究探究点一:二次函数y=ax2+bx+c的最值已知二次函数y=ax2+4x+a-1的最小值为2,则a的值为()A.3 B.-1 C.4 D.4或-1解析:∵二次函数y=ax2+4x+a-1有最小值2,∴a>0,y最小值=4ac-b24a=4a(a-1)-424a=2,整理,得a2-3a-4=0,解得a=-1或4.∵a>0,∴a=4.故选C.方法总结:求二次函数的最大(小)值有三种方法,第一种是由图象直接得出,第二种是配方法,第三种是公式法.变式训练:见《学练优》本课时练习“课堂达标训练” 第1题探究点二:利用二次函数求图形面积的最大值【类型一】 利用二次函数求矩形面积的最大值
解析:点E是BC︵的中点,根据圆周角定理的推论可得∠BAE=∠CBE,可证得△BDE∽△ABE,然后由相似三角形的对应边成比例得结论.证明:∵点E是BC︵的中点,即BE︵=CE︵,∴∠BAE=∠CBE.∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.方法总结:圆周角定理的推论是和角有关系的定理,所以在圆中,解决相似三角形的问题常常考虑此定理.三、板书设计圆周角和圆心角的关系1.圆周角的概念2.圆周角定理3.圆周角定理的推论本节课的重点是圆周角与圆心角的关系,难点是应用所学知识灵活解题.在本节课的教学中,学生对圆周角的概念和“同弧所对的圆周角相等”这一性质较容易掌握,理解起来问题也不大,而对圆周角与圆心角的关系理解起来则相对困难,因此在教学过程中要着重引导学生对这一知识的探索与理解.还有些学生在应用知识解决问题的过程中往往会忽略同弧的问题,在教学过程中要对此予以足够的强调,借助多媒体加以突出.
2、让幼儿在活动中体验合作的乐趣,培养他们解决问题、克服困难的好品质,激发幼儿的团队精神。活动准备:竹筐20个(边筐高25厘米)、4张圆形大小不一的荷叶、纸皮(荷叶)每人一张活动过程:一、准备活动1、 音乐游戏“小青蛙醒来了”。教师与幼儿随着音乐做各种动作,活动身体。2、 幼儿每人选一张“荷叶”,摆在地上,进行跳进跳出动作练习,(教师提醒幼儿注意起跳时先屈膝,落地要轻)
国旗下的讲话:新年新起点新希望尊敬的各位老师、亲爱的同学们:大家早上好!光阴似箭,岁月如歌。转眼间,我们即将告别难忘而辉煌的XX年,迈进令我们期待和憧憬的XX年。在新的一年即将到来之际,祝老师们新年快乐,身体健康,阖家幸福,工作顺利!祝同学们学习进步,茁壮成长,素质全面,成绩优良!今天我国旗下演讲的题目是《新年,新起点,新希望》。在XX年的日历上,有一个特别的日子——1月1日,这标志着华夏神州又增添了一道年轮,标志着时代的航船乘风破浪,伟大祖国又迎来了充满希望的一年。东晋诗人陶渊明曾有过这样的感叹:“盛年不重来,一日难再晨,及时当勉励,岁月不待人”。我们也不乏这种紧迫感。我们是青少年,青少年是生命中的春天,是早晨八九点钟的太阳。我们青少年更重要是读书,读书是一切成大事者的必由之路,是一切创造的基础。认真读书是时代的要求。
植树造林 美化环境各位老师、同学们:大家好!今天我讲话的题目是《植树造林 美化环境》,本周我们将迎来一个节日,3月12日,“全民植树节”。我们中华民族自古就有“爱树、育树”的传统。人们爱白杨的挺拔,爱垂柳的柔美,爱松树的坚强。有了树,才会有和谐美丽的大自然;有了树,才有清爽、新鲜的空气。树,它不仅能防风固沙,保持水土,还能美化环境,是城市的忠诚卫士,它用它特有的颜色为城市披上绿色的新装。如今,植树造林已成为民族的风尚,绿化家园已成为时代的追求。现在,作为学生的我们没有条件每天去植树、种草,我们能做到的是爱护我们身边的一草一木,去保护我们的学习和生活环境。当我们在绿树成荫的校园中漫步时,一定会感到心旷神怡;当我们在整洁优雅的环境中学习时,一定会感觉心情舒畅;因此,优美的环境,让我们懂得珍惜,学会爱护;优美的环境,让我们知书达礼,更加文明;优美的环境,让我们学习进步,道德高尚
学 会 做 人同学们:昨天是3月5日,大家记得这是一个什么日子吗?对了,xx年前,也就是1963年的3月5日,毛泽东等老一辈无产阶级革命家题词“向雷锋同志学习”,随即全国开展了轰轰烈烈的学雷锋活动。改革开放以后,学雷锋树新风成为我国社会主义精神文明建设的重要内容。今年,全省第七届“三优一学”创建文明城市竞赛活动即将开始。我们在学校接受教育的目的,绝不仅仅是为了学习各门科学理论知识,首先我们所需要的是学会做人。正如我身后办公楼前这幅标语所写的:“推进素质教育,建设特色学校”。学会做人并非大家所想的那样简单,要做一个具备高尚品质的人,必须从小开始训练。学校是我们学习生活的地方,是我们共同的家园。她被绿荫环抱,为小鸟作巢;也有现代高楼,更有充满朝气的我们使校园充满生机,这是需要我们共同保护的环境。可是大家记得这样的情景吗?
植树造林 美化环境各位老师、同学们:大家好!今天我讲话的题目是《植树造林 美化环境》,本周我们将迎来一个节日,3月12日,“全民植树节”。我们中华民族自古就有“爱树、育树”的传统。人们爱白杨的挺拔,爱垂柳的柔美,爱松树的坚强。有了树,才会有和谐美丽的大自然;有了树,才有清爽、新鲜的空气。树,它不仅能防风固沙,保持水土,还能美化环境,是城市的忠诚卫士,它用它特有的颜色为城市披上绿色的新装。如今,植树造林已成为民族的风尚,绿化家园已成为时代的追求。现在,作为学生的我们没有条件每天去植树、种草,我们能做到的是爱护我们身边的一草一木,去保护我们的学习和生活环境。当我们在绿树成荫的校园中漫步时,一定会感到心旷神怡;当我们在整洁优雅的环境中学习时,一定会感觉心情舒畅;因此,优美的环境,让我们懂得珍惜,学会爱护;优美的环境,让我们知书达礼,更加文明
学 会 做 人同学们:昨天是3月5日,大家记得这是一个什么日子吗?对了,xx年前,也就是1963年的3月5日,毛泽东等老一辈无产阶级革命家题词“向雷锋同志学习”,随即全国开展了轰轰烈烈的学雷锋活动。改革开放以后,学雷锋树新风成为我国社会主义精神文明建设的重要内容。今年,全省第七届“三优一学”创建文明城市竞赛活动即将开始。我们在学校接受教育的目的,绝不仅仅是为了学习各门科学理论知识,首先我们所需要的是学会做人。正如我身后办公楼前这幅标语所写的:“推进素质教育,建设特色学校”。学会做人并非大家所想的那样简单,要做一个具备高尚品质的人,必须从小开始训练。学校是我们学习生活的地方,是我们共同的家园。她被绿荫环抱,为小鸟作巢;也有现代高楼,更有充满朝气的我们使校园充满生机,这是需要我们共同保护的环境。可是大家记得这样的情景吗?
为大家收集整理了《XX年3月国旗下的讲话:三月学雷锋》供大家参考,希望对大家有所帮助!!!各位老师,各位同学:大家好!阳春三月,是我们学校的学雷锋月,也是我们学习雷锋的开始月。今天,我国旗下演讲的题目是“帮助别人,快乐自己”。当你在大街道上跌倒,有人在一旁嘲笑你,却没有扶你的时候; 当你的钱包被小偷偷走,旁人看见却不敢吱声的时候; 当你一个人需要人帮助,却没有人愿意帮助你的时候。各位同学,你,会是什么心情呢?想必会酸、苦、涩。可就在这时候,有一个人伸出了自己的手,去扶你,去帮助你,你是喝令他走,并说这种精神过时了,还是心存感激地接受帮助呢?答案是很明显的。雷锋精神依旧在我们身边灼灼发亮,雷锋精神的实质就是全心全意为人民服务,我们作为一名福高人,应该尽自己绵薄之力帮助别人,展现福高学子的奉献精神。帮助别人,快乐自己。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。