一、“五个一帮带联系”的内涵 学校领导班子成员和各处室中层干部每人联系一个年级组,深入一个班级,指导一个教研组,帮扶一名青年教师,转化一名“学困生”。 二、具体工作要求 .联系一个年级组。联系年级组的干部要经常深入年级组,了解年级组工作情况,了解教师的工作情况和学生的学习情况,参加年级组全体教师大会、班主任工作会议,对年级的教育教学工作进行指导。参加年级组全体学生大会,对学生进行教育和鼓励。参加年级组家长委员会和家长会,了解家长对学校工作的意见和建议,对家庭教育进行指导和帮助。
2、正确地使用节奏乐器,会用相应的乐器演奏打击乐,培养幼儿的思维能力。3、通过视唱、打节奏,掌握弹奏方法,练习弹奏曲子,激发幼儿的兴趣,体验集体演奏的快乐。二、 活动准备:1、语言节奏谱一张 2、打击乐器数个 3、打击乐谱一张4、乐谱表一张 5、电钢琴数台三、 活动过程:1、《律动》进场,1)老师发口令:“小兵们准备出发”幼儿“是”在进行曲的音乐伴奏下有精神地走步。2)音乐变弱:幼儿轻轻走路,老师按音乐的节奏轻声说:××××О,××××О 发现敌人,认真侦察! 幼儿弯腰半蹲着轻轻地走,手做持枪状边走边做寻找状进行侦察。
活动对象:中班幼儿 活动材料:白纸、彩笔、各种彩纸、胶水、自制信封和信封玩偶各5—6个(五六种不同的装饰风格) 活动价值:1、引导幼儿学习制作信封,变成玩偶进行装饰。发展幼儿创新能力。 2、培养幼儿良好的操作习惯,能收拾整理材料。 活动方法: 1、老师出示自制信封,让幼儿猜猜是怎么做出来的。 2、看图示,老师演示信封的做法,
2、通过表演及学做不同的事情,理解帮助爸爸做事情是一件快乐的事情。 3、通过表演活动,感受做事情的快乐,乐意参与各种劳动。 活动准备:幼儿用书人手一本。 活动过程: 一、与幼儿共同建构故事内容。 教师和幼儿共同阅读幼儿用书,共同建构故事。 1、教师讲故事至:“好吧!我就来当一次你们的小尾巴”时问:你们猜猜小尾巴是什么呢? 2、教师讲故事至:“用长刷子刷起墙来”时问:你们猜小猪会做什么呢? 3、教师讲故事至:“修修枝叶”时问:你们猜猜小猪会做什么呢? 4、教师讲至:“想在院子里歇一歇”时问:你们猜小猪会做些什么呢? 5、教师继续讲故事到结束。
[活动目标]1.引导幼儿发现学习,激发幼儿的好奇心和求知欲望,培养幼儿的探索精神。 2.通过各种探索影子的活动,使幼儿发现光和影子的关系。 [活动准备] 准备电灯、手电筒、幻灯机、投影仪等。活动在晴天的户外场地上进行。 [活动过程]1、在户外找影子:如树影、房影、人影等。让幼儿在阳光下和阴暗处分别跑一跑,看看自己的影子,对比了解阳光下有影子,阴暗处则没影子。说说怎样才能产生影子。2、想一想,什么时候什么地方发现过影子?(在灯光、火光、月光、手电光照射下有影子);请幼儿分别在灯光、火光、手电光照射下观察影子有什么不同,为什么?3、画影子:早晨中午、下午站在同一地点,两人一组互相帮忙,把地上的影子画下来。比一比,自己与他人的影子是否相同?在三个不同时期,自己的三个影子有什么变化?想一想影子为什么会变?
2、探索根据实物图的内容选择答案图,并列出8的第一、二组加减算试。3、用较准确、完整的语言讲述算式的含意。教学准备:教具:图片:8的第一组实物图七张、第二组实物图五张。学具:幼儿用书、铅笔若干。操作材料若干(7以内的加减算式和8的第一、二组加减算试。)活动过程:一、集体活动。1、复习8的组成——玩碰球游戏。2、学习8的第一组加减。
3.继续培养幼儿遵守集体规则的良好品质。活动准备松紧带圈人手一个;录音机、磁带;彩色气球若干,并分两组挂在墙上。课前让幼儿了解松紧带圈的特性,知道它具有可变性,可以由短变长,由圆变长;利用其有弹性可以射出等等。活动过程:一、开始部分幼儿拿着松紧带圈自由进入场内,听到哨音后集合成4路纵队做松紧带圈操。
《奇偶性》内容选自人教版A版第一册第三章第三节第二课时;函数奇偶性是研究函数的一个重要策略,因此奇偶性成为函数的重要性质之一,它的研究也为今后指对函数、幂函数、三角函数的性质等后续内容的深入起着铺垫的作用.课程目标1、理解函数的奇偶性及其几何意义;2、学会运用函数图象理解和研究函数的性质;3、学会判断函数的奇偶性.数学学科素养1.数学抽象:用数学语言表示函数奇偶性;2.逻辑推理:证明函数奇偶性;3.数学运算:运用函数奇偶性求参数;4.数据分析:利用图像求奇偶函数;5.数学建模:在具体问题情境中,运用数形结合思想,利用奇偶性解决实际问题。重点:函数奇偶性概念的形成和函数奇偶性的判断;难点:函数奇偶性概念的探究与理解.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
一、复习回顾,温故知新1. 任意角三角函数的定义【答案】设角 它的终边与单位圆交于点 。那么(1) (2) 2.诱导公式一 ,其中, 。终边相同的角的同一三角函数值相等二、探索新知思考1:(1).终边相同的角的同一三角函数值有什么关系?【答案】相等(2).角 -α与α的终边 有何位置关系?【答案】终边关于x轴对称(3).角 与α的终边 有何位置关系?【答案】终边关于y轴对称(4).角 与α的终边 有何位置关系?【答案】终边关于原点对称思考2: 已知任意角α的终边与单位圆相交于点P(x, y),请同学们思考回答点P关于原点、x轴、y轴对称的三个点的坐标是什么?【答案】点P(x, y)关于原点对称点P1(-x, -y)点P(x, y)关于x轴对称点P2(x, -y) 点P(x, y)关于y轴对称点P3(-x, y)
【活动目的】1. 使学生明礼诚信,做一个诚实守信,言行一致的人。2. 锻炼学生组织活动的筹划能力、展示学生的表演才艺。【活动准备】1. 学生事先准备好有关诚实守信的相关书面材料2. 班长为本次主题班会的主持人,准备好相关讲稿。【活动过程】一、激情导入男:我们的祖国是一个有着悠久历史、灿烂文明的大国。女: 中华民族是一个勤劳、勇敢、智慧民族。男:在我们漫漫的人生路上,什么不可丢弃?女:在我们遇到艰难困苦时,什么要永留身边?男:它在我们身边,离我们是那样近;它又离我们越来越远,是那样模糊。女:它是我们远行路上的灯塔,指引着我们前行的方向。合:它就是我们人生路上的朋友——诚信!即诚实守信。男:什么是诚实守信呢?(学生交流:诚实意味着实事求是,表里如一,说实话,做实事,不虚伪,不夸大其辞。诚实的人,不说谎话,不会欺骗自己,同时也不欺骗别人,做事大大方方,不做违背良心的事,实事求是,言行一致,说到做到。)
一、引入 主持人:感谢父母,他们给予你生命,抚养你成人;感谢老师,他们教给你知识,引领你做“大写的人”;感谢朋友,他们让你感受到世界的温暖;感谢对手,他们令你不断进取、努力;感谢太阳,它让你获得温暖;感谢江河,它让你拥有清水;感谢大地,它让你有生存空间。感恩,是一种心态,一种品质,一种艺术。感恩是礼貌。有人帮助了我们,我们随口说声“谢谢”,可能会给对方心里带来一股暖流。有人为我们付出了许多,我们感谢他,他可能会更加多的帮我们。怀着感恩的心,是有礼貌,是知恩图报。所以,感恩,是一种有礼貌的品质。感恩是画笔。学会感恩,生活将变得无比精彩。感恩描绘着生活,将生活中大块的写意,挥洒得酣畅淋漓;将生活中清淡的山水,点缀得清秀飘逸;将生活中细致的工笔,描绘得细腻精美。所以,感恩,是一种多样的艺术。下面我宣布“让我们都有一颗感恩的心”主题班会现在开始!
教材分析改革开放后我国的综合国力不断增强,人民对祖国统一的愿望越来越迫切。本节课以“一国两制”构想的提出,香港、澳门的回归和海峡两岸关系的发展为中心,说明实现祖国统一,完成中华民族复兴是历史发展的必然。第一目“‘一国两制’构想的提出”主要讲述了“一国两制”的含义及历史意义。第二目“香港、澳门的回归”着重讲述了香港回归、澳门回归的经过及历史意义,这是“一国两制”成功的实践。第三目“海峡两岸关系的发展”讲述了大陆注重发展与台湾的关系,促进海峡两岸的经济文化交流与合作,打破了几十年来海峡两岸的隔绝状态,促进了祖国统一的进程。此外,教材还通过“资料回放”“历史纵横”“学思之窗”等栏目,为学生学习提供了一些详细的史料。在教学中要分析图表资料,引导学生理解完成祖国统一大业,实现中华民族的复兴,是任何人也阻挡不了的历史潮流。
幂函数是在继一次函数、反比例函数、二次函数之后,又学习了单调性、最值、奇偶性的基础上,借助实例,总结出幂函数的概念,再借助图像研究幂函数的性质.课程目标1、理解幂函数的概念,会画幂函数y=x,y=x2,y=x3,y=x-1,y=x 的图象;2、结合这几个幂函数的图象,理解幂函数图象的变化情况和性质;3、通过观察、总结幂函数的性质,培养学生概括抽象和识图能力.数学学科素养1.数学抽象:用数学语言表示函数幂函数;2.逻辑推理:常见幂函数的性质;3.数学运算:利用幂函数的概念求参数;4.数据分析:比较幂函数大小;5.数学建模:在具体问题情境中,运用数形结合思想,利用幂函数性质、图像特点解决实际问题。重点:常见幂函数的概念、图象和性质;难点:幂函数的单调性及比较两个幂值的大小.
本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.3.2节《对数的运算》。其核心是弄清楚对数的定义,掌握对数的运算性质,理解它的关键就是通过实例使学生认识对数式与指数式的关系,分析得出对数的概念及对数式与指数式的 互化,通过实例推导对数的运算性质。由于它还与后续很多内容,比如对数函数及其性质,这也是高考必考内容之一,所以在本学科有着很重要的地位。解决重点的关键是抓住对数的概念、并让学生掌握对数式与指数式的互化;通过实例推导对数的运算性质,让学生准确地运用对数运算性质进行运算,学会运用换底公式。培养学生数学运算、数学抽象、逻辑推理和数学建模的核心素养。1、理解对数的概念,能进行指数式与对数式的互化;2、了解常用对数与自然对数的意义,理解对数恒等式并能运用于有关对数计算。
学生已经学习了指数运算性质,有了这些知识作储备,教科书通过利用指数运算性质,推导对数的运算性质,再学习利用对数的运算性质化简求值。课程目标1、通过具体实例引入,推导对数的运算性质;2、熟练掌握对数的运算性质,学会化简,计算.数学学科素养1.数学抽象:对数的运算性质;2.逻辑推理:换底公式的推导;3.数学运算:对数运算性质的应用;4.数学建模:在熟悉的实际情景中,模仿学过的数学建模过程解决问题.重点:对数的运算性质,换底公式,对数恒等式及其应用;难点:正确使用对数的运算性质和换底公式.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。一、 情景导入回顾指数性质:(1)aras=ar+s(a>0,r,s∈Q).(2)(ar)s= (a>0,r,s∈Q).(3)(ab)r= (a>0,b>0,r∈Q).那么对数有哪些性质?如 要求:让学生自由发言,教师不做判断。而是引导学生进一步观察.研探.
对数与指数是相通的,本节在已经学习指数的基础上通过实例总结归纳对数的概念,通过对数的性质和恒等式解决一些与对数有关的问题.课程目标1、理解对数的概念以及对数的基本性质;2、掌握对数式与指数式的相互转化;数学学科素养1.数学抽象:对数的概念;2.逻辑推理:推导对数性质;3.数学运算:用对数的基本性质与对数恒等式求值;4.数学建模:通过与指数式的比较,引出对数定义与性质.重点:对数式与指数式的互化以及对数性质;难点:推导对数性质.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。一、 情景导入已知中国的人口数y和年头x满足关系 中,若知年头数则能算出相应的人口总数。反之,如果问“哪一年的人口数可达到18亿,20亿,30亿......”,该如何解决?要求:让学生自由发言,教师不做判断。而是引导学生进一步观察.研探.
函数在高中数学中占有很重要的比重,因而作为函数的第一节内容,主要从三个实例出发,引出函数的概念.从而就函数概念的分析判断函数,求定义域和函数值,再结合三要素判断函数相等.课程目标1.理解函数的定义、函数的定义域、值域及对应法则。2.掌握判定函数和函数相等的方法。3.学会求函数的定义域与函数值。数学学科素养1.数学抽象:通过教材中四个实例总结函数定义;2.逻辑推理:相等函数的判断;3.数学运算:求函数定义域和求函数值;4.数据分析:运用分离常数法和换元法求值域;5.数学建模:通过从实际问题中抽象概括出函数概念的活动,培养学生从“特殊到一般”的分析问题的能力,提高学生的抽象概括能力。重点:函数的概念,函数的三要素。难点:函数概念及符号y=f(x)的理解。
《基本不等式》在人教A版高中数学第一册第二章第2节,本节课的内容是基本不等式的形式以及推导和证明过程。本章一直在研究不等式的相关问题,对于本节课的知识点有了很好的铺垫作用。同时本节课的内容也是之后基本不等式应用的必要基础。课程目标1.掌握基本不等式的形式以及推导过程,会用基本不等式解决简单问题。2.经历基本不等式的推导与证明过程,提升逻辑推理能力。3.在猜想论证的过程中,体会数学的严谨性。数学学科素养1.数学抽象:基本不等式的形式以及推导过程;2.逻辑推理:基本不等式的证明;3.数学运算:利用基本不等式求最值;4.数据分析:利用基本不等式解决实际问题;5.数学建模:利用函数的思想和基本不等式解决实际问题,提升学生的逻辑推理能力。重点:基本不等式的形成以及推导过程和利用基本不等式求最值;难点:基本不等式的推导以及证明过程.
例7 用描述法表示抛物线y=x2+1上的点构成的集合.【答案】见解析 【解析】 抛物线y=x2+1上的点构成的集合可表示为:{(x,y)|y=x2+1}.变式1.[变条件,变设问]本题中点的集合若改为“{x|y=x2+1}”,则集合中的元素是什么?【答案】见解析 【解析】集合{x|y=x2+1}的代表元素是x,且x∈R,所以{x|y=x2+1}中的元素是全体实数.变式2.[变条件,变设问]本题中点的集合若改为“{y|y=x2+1}”,则集合中的元素是什么?【答案】见解析 【解析】集合{ y| y=x2+1}的代表元素是y,满足条件y=x2+1的y的取值范围是y≥1,所以{ y| y=x2+1}={ y| y≥1},所以集合中的元素是大于等于1的全体实数.解题技巧(认识集合含义的2个步骤)一看代表元素,是数集还是点集,二看元素满足什么条件即有什么公共特性。
本节课选自《普通高中课程标准数学教科书-必修一》(人 教A版)第五章《三角函数》,本节课是第1课时,本节主要介绍推广角的概念,引入正角、负角、零角的定义,象限角的概念以及终边相同的角的表示法。树立运动变化的观点,并由此进一步理解推广后的角的概念。教学方法可以选用讨论法,通过实际问题,如时针与分针、体操等等都能形成角的流念,给学生以直观的印象,形成正角、负角、零角的概念,明确规定角的概念,通过具体问题让学生从不同角度理解终边相同的角,从特殊到一般归纳出终边相同的角的表示方法。A.了解任意角的概念;B.掌握正角、负角、零角及象限角的定义,理解任意角的概念;C.掌握终边相同的角的表示方法;D.会判断角所在的象限。 1.数学抽象:角的概念;2.逻辑推理:象限角的表示;3.数学运算:判断角所在象限;4.直观想象:从特殊到一般的数学思想方法;
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。