课前小测1.思考辨析(1)若Sn为等差数列{an}的前n项和,则数列Snn也是等差数列.( )(2)若a1>0,d<0,则等差数列中所有正项之和最大.( )(3)在等差数列中,Sn是其前n项和,则有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在项数为2n+1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故选B项.]3.等差数列{an}中,S2=4,S4=9,则S6=________.15 [由S2,S4-S2,S6-S4成等差数列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知数列{an}的通项公式是an=2n-48,则Sn取得最小值时,n为________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有负项的和最小,即n=23或24.]二、典例解析例8.某校新建一个报告厅,要求容纳800个座位,报告厅共有20排座位,从第2排起后一排都比前一排多两个座位. 问第1排应安排多少个座位?分析:将第1排到第20排的座位数依次排成一列,构成数列{an} ,设数列{an} 的前n项和为S_n。
1.判断正误(正确的打“√”,错误的打“×”)(1)函数f (x)在区间(a,b)上都有f ′(x)<0,则函数f (x)在这个区间上单调递减. ( )(2)函数在某一点的导数越大,函数在该点处的切线越“陡峭”. ( )(3)函数在某个区间上变化越快,函数在这个区间上导数的绝对值越大.( )(4)判断函数单调性时,在区间内的个别点f ′(x)=0,不影响函数在此区间的单调性.( )[解析] (1)√ 函数f (x)在区间(a,b)上都有f ′(x)<0,所以函数f (x)在这个区间上单调递减,故正确.(2)× 切线的“陡峭”程度与|f ′(x)|的大小有关,故错误.(3)√ 函数在某个区间上变化的快慢,和函数导数的绝对值大小一致.(4)√ 若f ′(x)≥0(≤0),则函数f (x)在区间内单调递增(减),故f ′(x)=0不影响函数单调性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用导数判断下列函数的单调性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因为f(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函数在R上单调递增,如图(1)所示
一、 问题导学前面两节所讨论的变量,如人的身高、树的胸径、树的高度、短跑100m世界纪录和创纪录的时间等,都是数值变量,数值变量的取值为实数.其大小和运算都有实际含义.在现实生活中,人们经常需要回答一定范围内的两种现象或性质之间是否存在关联性或相互影响的问题.例如,就读不同学校是否对学生的成绩有影响,不同班级学生用于体育锻炼的时间是否有差别,吸烟是否会增加患肺癌的风险,等等,本节将要学习的独立性检验方法为我们提供了解决这类问题的方案。在讨论上述问题时,为了表述方便,我们经常会使用一种特殊的随机变量,以区别不同的现象或性质,这类随机变量称为分类变量.分类变量的取值可以用实数表示,例如,学生所在的班级可以用1,2,3等表示,男性、女性可以用1,0表示,等等.在很多时候,这些数值只作为编号使用,并没有通常的大小和运算意义,本节我们主要讨论取值于{0,1}的分类变量的关联性问题.
温故知新 1.离散型随机变量的定义可能取值为有限个或可以一一列举的随机变量,我们称为离散型随机变量.通常用大写英文字母表示随机变量,例如X,Y,Z;用小写英文字母表示随机变量的取值,例如x,y,z.随机变量的特点: 试验之前可以判断其可能出现的所有值,在试验之前不可能确定取何值;可以用数字表示2、随机变量的分类①离散型随机变量:X的取值可一、一列出;②连续型随机变量:X可以取某个区间内的一切值随机变量将随机事件的结果数量化.3、古典概型:①试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等。二、探究新知探究1.抛掷一枚骰子,所得的点数X有哪些值?取每个值的概率是多少? 因为X取值范围是{1,2,3,4,5,6}而且"P(X=m)"=1/6,m=1,2,3,4,5,6.因此X分布列如下表所示
1.对称性与首末两端“等距离”的两个二项式系数相等,即C_n^m=C_n^(n"-" m).2.增减性与最大值 当k(n+1)/2时,C_n^k随k的增加而减小.当n是偶数时,中间的一项C_n^(n/2)取得最大值;当n是奇数时,中间的两项C_n^((n"-" 1)/2) 与C_n^((n+1)/2)相等,且同时取得最大值.探究2.已知(1+x)^n =C_n^0+C_n^1 x+...〖+C〗_n^k x^k+...+C_n^n x^n 3.各二项式系数的和C_n^0+C_n^1+C_n^2+…+C_n^n=2n.令x=1 得(1+1)^n=C_n^0+C_n^1 +...+C_n^n=2^n所以,(a+b)^n 的展开式的各二项式系数之和为2^n1. 在(a+b)8的展开式中,二项式系数最大的项为 ,在(a+b)9的展开式中,二项式系数最大的项为 . 解析:因为(a+b)8的展开式中有9项,所以中间一项的二项式系数最大,该项为C_8^4a4b4=70a4b4.因为(a+b)9的展开式中有10项,所以中间两项的二项式系数最大,这两项分别为C_9^4a5b4=126a5b4,C_9^5a4b5=126a4b5.答案:1.70a4b4 126a5b4与126a4b5 2. A=C_n^0+C_n^2+C_n^4+…与B=C_n^1+C_n^3+C_n^5+…的大小关系是( )A.A>B B.A=B C.A<B D.不确定 解析:∵(1+1)n=C_n^0+C_n^1+C_n^2+…+C_n^n=2n,(1-1)n=C_n^0-C_n^1+C_n^2-…+(-1)nC_n^n=0,∴C_n^0+C_n^2+C_n^4+…=C_n^1+C_n^3+C_n^5+…=2n-1,即A=B.答案:B
1.确定研究对象,明确哪个是解释变量,哪个是响应变量;2.由经验确定非线性经验回归方程的模型;3.通过变换,将非线性经验回归模型转化为线性经验回归模型;4.按照公式计算经验回归方程中的参数,得到经验回归方程;5.消去新元,得到非线性经验回归方程;6.得出结果后分析残差图是否有异常 .跟踪训练1.一只药用昆虫的产卵数y与一定范围内的温度x有关,现收集了6组观测数据列于表中: 经计算得: 线性回归残差的平方和: ∑_(i=1)^6?〖(y_i-(y_i ) ?)〗^2=236,64,e^8.0605≈3167.其中 分别为观测数据中的温度和产卵数,i=1,2,3,4,5,6.(1)若用线性回归模型拟合,求y关于x的回归方程 (精确到0.1);(2)若用非线性回归模型拟合,求得y关于x回归方程为 且相关指数R2=0.9522. ①试与(1)中的线性回归模型相比较,用R2说明哪种模型的拟合效果更好 ?②用拟合效果好的模型预测温度为35℃时该种药用昆虫的产卵数.(结果取整数).
校园内我们本着“处处是教育之地,人人是教育之师”的原则,把教育理念与科学文化知识融进校园的每一个角落,教师、学生齐动员,开垦楼后荒地。我们在开垦出来的土地上种花草,栽树木,一草一木的设置、一花一景的搭配,都使整个学校体现着浓厚的人文氛围,美好的环境不仅给学生以美的享受,更能于无声处发挥其规范学生言行,净化学生心灵的作用。在劳动之余使学生有了“学习如禾苗,懒惰如蒿草”的人生感悟。优美的校园环境对学生品德具有潜移默化、陶冶熏陶的作用。我们本着“有限空间,开拓无限创意”对教学楼墙壁进行着装,一层,名人名言警句。二层,师生书画作品。三层,获奖美术作品。四层,科技创意作品。让学生置身于文化氛围浓郁的教学楼中耳濡目染,感受传统文化与现代文化的对接,感受名人与伟人的人格魅力,感受传统工艺与现代科技完美结合。
一、做一个脚踏实地的人我们每个人都有梦想,有追求,希冀得到认可和肯定,渴望赢得鲜花与掌声,希望金榜题名,春风得意,这是人之常情,哲学家黑格尔曾经说过:“一个民族有一些关注天空的人,他们才有希望”。对于民族是这样,对我们每个个体而言,也是如此,我们需要仰望星空,但理想很丰满,现实很骨感,我们必须要学会正视现实并从现实出发。就拿今天的同学们来说,你们现在所在的学校可能并不是你们梦寐以求的,也或许你们很不甘心,或者有其他这样那样的想法,但我想请同学们注意一句话:既来之,则安之。以“归零”心态,重新出发。其次,现在是新起点,新征程,你和其他大学甚至北大清华的同学又站在同一条起跑线上,只要你努力,就有无限可能。同时,我们已经取得优异的成绩,许多优秀的校友佳绩频传,不断诠释成功。近五年来,我们的同学考取公务员和事业单位40多人,考取研究生近200人,司法考试通过率曾一度突破50%,去年法考元年就有33人一次通过,省级以上获奖不胜枚举。所以今天你们的选择是正确的,从现在开始,踏踏实实的走好每一步,未来可期。
一、树立事业心,增强责任心。 教书是手段,育人是目的。因此,教师在任何时候都不能忘记,自己不单单是为教书而教书的“教书匠”,而应是一个教育家,是人类灵魂的工程师。“以情育人,热爱学生;以言导行,诲人不倦;以才育人,亲切关心;以身示范,尊重信任”。热爱学生是教师职业道德的根本。教师对学生的爱,即是敬业精神的核心,又是教师高尚品德的自我表现,既是育人的目的,又是教师教书这个职业的具体表现。
素质教育与现代思想要求我们要教会学生“学会学习”和“学会健体,要重视培养独立从事科学锻炼身体的能力。于是我们有些教师由此认为体育教学要实现多项转变:由“重视学会”转变为“重视会学”;由“重视体育技能学习”转变为“重视体育能力的培养”;由“重视技能掌握”转变为“重视情感体验”。于是在教学中就出现了“自定目标、自主学习、自主锻炼”等名目繁多的教学手段。学生在课堂上爱怎么学就怎么学,只要课堂上学生始终是在欢笑中度过就是成功的好课,就说我们学校这次开展的体育教学活动来说,两堂体育课内容设计都合乎学生的兴趣,但是总觉得少了些什么,运动技能荡然无存,教师和学生轻轻松松在欢笑中下了课。试问学生的能力得到发展了吗?学生的体能得到锻炼了吗?
一、树立事业心,增强责任心。 教书是手段,育人是目的。因此,教师在任何时候都不能忘记,自己不单单是为教书而教书的“教书匠”,而应是一个教育家,是人类灵魂的工程师。“以情育人,热爱学生;以言导行,诲人不倦;以才育人,亲切关心;以身示范,尊重信任”。热爱学生是教师职业道德的根本。教师对学生的爱,即是敬业精神的核心,又是教师高尚品德的自我表现,既是育人的目的,又是教师教书这个职业的具体表现。
素质教育与现代思想要求我们要教会学生“学会学习”和“学会健体,要重视培养独立从事科学锻炼身体的能力。于是我们有些教师由此认为体育教学要实现多项转变:由“重视学会”转变为“重视会学”;由“重视体育技能学习”转变为“重视体育能力的培养”;由“重视技能掌握”转变为“重视情感体验”。于是在教学中就出现了“自定目标、自主学习、自主锻炼”等名目繁多的教学手段。学生在课堂上爱怎么学就怎么学,只要课堂上学生始终是在欢笑中度过就是成功的好课,就说我们学校这次开展的体育教学活动来说,两堂体育课内容设计都合乎学生的兴趣,但是总觉得少了些什么,运动技能荡然无存,教师和学生轻轻松松在欢笑中下了课。试问学生的能力得到发展了吗?学生的体能得到锻炼了吗?
活动内容:教师首先让学生回顾学过的三类事件,接着让学生抛掷一枚均匀的硬币,硬币落下后,会出现正面朝上、正面朝下两种情况,你认为正面朝上和正面朝下的可能性相同吗?(让学生体验数学来源于生活)。活动目的:使学生回顾学过的三类事件,并由掷硬币游戏培养学生猜测游戏结果的能力,并从中初步体会猜测事件可能性。让学生体会猜测结果,这是很重要的一步,我们所学到的很多知识,都是先猜测,再经过多次的试验得出来的。而且由此引出猜测是需通过大量的实验来验证。这就是我们本节课要来研究的问题(自然引出课题)。
这是本节课的重点。让同学们将∠aob对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开,请同学们观察并思考:后折叠的二条折痕的交点在什么地方?这两条折痕与角的两边有什么位置关系?这两条折痕在数量上有什么关系?这时有的同学会说:“角的平分线上的点到角的两边的距离相等”.即得到了角平分线的性质定理的猜想。接着我会让同学们理论证明,并转化为符号语言,注意分清题设和结论。有的同学会用全等三角形的判定定理aas证明,从而证明了猜想得到了角平分线的性质定理。
问题1:你能证明“两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行”这个命题的正确性吗?已知:如图,∠1和∠2是直线a,b被直线c截出的内错角,且∠1=∠2.求证:a∥b. 问题2:你能证明“两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行”这个命题的正确性吗?已知:如图,∠1和∠2是直线a、b被直线c截出的同旁内角,且∠1与∠2互补.求证:a∥b
1、交流与发现为了了解本校学生暑假期间参加体育活动的情况,学校准备抽取一部分学生进行调查,你认为按下面的调查方法取得的结果能反映全校学生的一般情况吗?如果不能反映,应当如何改进调查方法?方法1:调查学校田径队的30名同学;方法2:调查每个班的男同学;方法3:从每班抽取1名同学进行调查;方法4:选取每个班级中的一半学生进行调查.通过前面的活动,学生亲身经历了一次数据的调查过程,并通过对所得数据的计算和分析,了解了自己在家干家务活的时间所处的位置和水平,在调查过程中体会到调查方便有效的重要性.接下来,就能很好地解决交流与发现中的问题.师生共同讨论完成交流与发现.
学习过程:一、自主预习课本P175——186的内容,独立完成课后练习1、2、3、4、5后,与小组同学交流(课前完成)二、回顾课本,思考下列问题:1.SAS定理的内容2.ASA定理的内容3.SSS定理的内容4.几何证明的过程的步骤
■ 溺水致死的原因溺水致死的原因主要是气管内吸入大量水分阻碍呼吸,或因喉头强烈痉挛引起呼吸道关闭、窒息死亡。另外,溺水致死的原因还包括:1、大量水藻、草类、泥沙进入口鼻、气管和肺,阻塞呼吸道而窒息。2、惊恐、寒冷使喉头痉挛、呼吸道梗阻而窒息。3、淡水淹溺:大量水分进入血液,血液被稀释,出现溶血、血钾升高导致心室颤动、心 跳停止。4、海水淹溺:高钠引起血渗透压升高,造成严重肺水肿,导致心力衰竭而死亡。 ■ 溺水的症状从人体外部特征判断,溺水者面部通常青紫、肿胀、双眼充血,口腔、鼻孔和气管充满血性泡沫;肢体湿冷、上腹胀满、烦躁不安或神志不清、呼吸不规则、脉细弱,甚至抽搐或呼吸、 心跳停止;肺腔一般有积水,内有泥沙或其他水中的杂质。从医学检查判断,溺水者的肺部罗音、心音弱而不整,淡水淹溺者有血液稀释和溶血的表现,海水淹溺者有血液浓缩和高血钾的 表现,严重者会因心跳、呼吸停止而死亡。
一、 丰富了我的理论知识 在集中学习的九天里,讲课的老师结合案例,先后给我们系统讲述了阅读教学、作文教学、班级管理、教育心理、校本教研等理论知识。每一个专题讲座都给我留下了深刻的印象以及厚重的思考。陈教授的《教育心理与教师发展》让我们懂得了如何做一个好老师。李教授的《课堂观察与压力管理》告诉我们如何幸福生活,快乐工作。孔教授的《以良好的素养,高度的责任,培养高素质的人才》为当今教师指明了方向。聂教师的《一名普通教师的成长》、《班级管理》让我们明白了教师如何快速成长。胡教研员的《中学语文教学的有效性实践与反思》、《课例研究与教师专业发展》,欧教授的《校本教研及其实践策略》,焦教授《学点研究方法》,中央教科所的王老师《如何做研究型教师——与研究者共同走进问题的情境》教导我们教学科研化,教师学者化。真正教好书,教学必须与教研相结合。倪教授的《关于写作教学的有效性思考》直指我们语文学科中写作上的缺失。
1、问题1的设计基于学生已有的一元一次方程的知识,学生独立思考问题,同学会考虑到题中涉及到等量关系,从中抽象出一元一次方程模型;同学可能想不到用方程的方法解决,可以由组长带领进行讨论探究.2、问题2的设计为了引出二元一次方程,但由于同学的知识有限,可能有个别同学会设两个未知数,列出二元一次方程;如果没有生列二元一次方程,教师可引导学生分析题目中有两个未知量,我们可设两个未知数列方程,再次从中抽象出方程模型.根据方程特点让生给方程起名,提高学生学习兴趣.3、定义的归纳,先请同学们观察所列的方程,找出它们的共同点,并用自己的语言描述,组内交流看法;如果学生概括的不完善,请其他同学补充. 交流完善给出定义,教师规范定义.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。