41. Bill cares about sportsevents and how the sports players are now.42. Tony is interested in reading. He wants to knowwhat kind of new books have come out and how some famous writers are livingnow.
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 1.2正弦型函数. *创设情境 兴趣导入 与正弦函数图像的做法类似,可以用“五点法”作出正弦型函数的图像.正弦型函数的图像叫做正弦型曲线. 介绍 播放 课件 质疑 了解 观看 课件 思考 学生自然的走向知识点 0 5*巩固知识 典型例题 例3 作出函数在一个周期内的简图. 分析 函数与函数的周期都是,最大值都是2,最小值都是-2. 解 为求出图像上五个关键点的横坐标,分别令,,,,,求出对应的值与函数的值,列表1-1如下: 表 001000200 以表中每组的值为坐标,描出对应五个关键点(,0)、(,2)、(,0)、(,?2)、(,0).用光滑的曲线联结各点,得到函数在一个周期内的图像(如图). 图 引领 讲解 说明 引领 观察 思考 主动 求解 观察 通过 例题 进一 步领 会 注意 观察 学生 是否 理解 知识 点 15
一、定义: ,这一公式表示的定理叫做二项式定理,其中公式右边的多项式叫做的二项展开式;上述二项展开式中各项的系数 叫做二项式系数,第项叫做二项展开式的通项,用表示;叫做二项展开式的通项公式.二、二项展开式的特点与功能1. 二项展开式的特点项数:二项展开式共(二项式的指数+1)项;指数:二项展开式各项的第一字母依次降幂(其幂指数等于相应二项式系数的下标与上标的差),第二字母依次升幂(其幂指数等于二项式系数的上标),并且每一项中两个字母的系数之和均等于二项式的指数;系数:各项的二项式系数下标等于二项式指数;上标等于该项的项数减去1(或等于第二字母的幂指数;2. 二项展开式的功能注意到二项展开式的各项均含有不同的组合数,若赋予a,b不同的取值,则二项式展开式演变成一个组合恒等式.因此,揭示二项式定理的恒等式为组合恒等式的“母函数”,它是解决组合多项式问题的原始依据.又注意到在的二项展开式中,若将各项中组合数以外的因子视为这一组合数的系数,则易见展开式中各组合数的系数依次成等比数列.因此,解决组合数的系数依次成等比数列的求值或证明问题,二项式公式也是不可或缺的理论依据.
重点分析:本节课的重点是离散型随机变量的概率分布,难点是理解离散型随机变量的概念. 离散型随机变量 突破难点的方法: 函数的自变量 随机变量 连续型随机变量 函数可以列表 X123456p 2 4 6 8 10 12
(一)村民小组历史沿革 新中国成立伊始,*县共建立*个区(镇),*个乡。*年*月,全县划为*个区和惠州镇,原*个乡划为*个小乡镇,此后区、镇、乡划分多有变动,各村归属乡管理。*年*月,*县第一个人民公社——东风人民公社成立,至*月*日,全县实现公社化。*年,全县划分为*个公社,下设生产大队,生产大队下设生产队,即村民小组前身。此后,*县根据实际对公社进行多次调整,但“公社—生产大队—生产小队”体制未发生根本变化。“文革”结束时,全县共*个公社。*年,开展政社分开工作,公社改区,设区公所,并在农村建立*个乡政权。*年,全县设*个镇和*个乡,乡镇下辖行政村,村设村民小组。此后,历经数次变革,至目前,全区下辖*镇*街道,计*个村和*个村民小组。
我们社是学术类的社团,虽然名为研究会,并非只是呆呆坐在书桌前专心苦读古籍、名着。我们的会员充满了对历史文化的好奇和热情,自我动手diy,在玩的同时学到知识是我们最终的目的。
其实追逐富有没有错,只是在追逐的时候,是否始终是基于对一种爱的感恩和报答呢世界上应当有这么一片净土,没有金钱的纷争,不为物质所左右,那里有心灵的自由,那里才能体会付出的欢乐。——这就是慈善事业。
20XX.03-2018.12 XXXX有限公司 文案策划Ø 负责公司自媒体的日常图文内容的策划撰写和文案策划;Ø 围绕公司企业文化宣传,撰写企业文化主题活动策划方案;Ø 进行公司总部各项宣传媒体图文材料收集、编辑及汇编成册。Ø 负责对市场热门话题敏感,善于抓热点,并能输出相关内容。
一、防汛总目标按照“安全第一,常备不懈,以防为主,全力抢险”的防洪方针,树立“预防为主、防重于抢”的防洪理念,贯彻“全员防洪、科学防洪”的指导思想,切实落实防汛工作责任制,做到责任到位、指挥到位、人员到位、物资到位、措施到位、抢险及时,确保施工人员、项目营区、物资设备安全渡汛。雨季来临,为减小、避免雨季对工程建设造成损失,发生意外事故时,能够有计划、有组织、及时、有序、高效的采取措施,作出快速反应,最大限度地减少事故对人员伤亡、财产损失的程度,对环境影响的程度,结合本项目的情况,制定本预案。
二、应急组织及职责为确保科室万一发生火灾时,医院义务消防队伍和专业消防队伍未赶到火灾现场时,科室能有序地开展报警、灭火、疏散、抢救为一体的应急处置,确定现场指挥人员,成立由在岗医护人员、护工和家属等人员组成的应急小组。1、由科室确定一人为现场临时指挥人员职责:在医院保卫部门和专业消防队伍未到达前,全权负责火灾现场的应急指挥,待专业消防队伍到达后,立即将火场内部情况、科室在岗人员和病人人数及疏散情况向消防队指挥人员汇报,以便消防人员掌握火场情况,展开救援。
(二)身体训练的主要内容 1、做徒手操 2、以跑为主的身体训练。 (l)慢跑:15米X2,指导学生跑的动作。 (2)快跑:10米X2、15米X2,要求跑的动作正确。 (3)曲线跑:培养学生的灵敏。 (4)自由跳:培养学生的后蹬方法。
一、围绕中心,服从大局,做好宿舍调整及管理服务工作 1、做好宿舍调整工作。为了达到学校提出的有关住宿标准,宿舍管理方面,克服各种困难;积极做好学生的思想工作,有力确保了学校的安全稳定大局。 2、宿舍晚间熄灯制度。为了配合校风学风建设,加强对学生管理制度,熄灯后加强了查宿舍人员名单,了解学生动态情况。有什么问题及时上报。
(一)调整产业结构,大力发展经济,创造良好的就业环境随着社会转型产业升级和国家就业政策的引导支持,妇女就业问题得到缓解,但劳动力剩余导致的失业现象仍然存在。虽然县相关职能部门在这方面做了大量的工作,但这只解决了燃眉之急,没有根本解决问题。20xx年城镇登记失业人数达x万人,其中女性失业人数x万人,在失业总人数中女性占到x%。对此,我们要多开发一些适合女性就业的工作岗位,多为女性创造一些就业机会,为促进妇女的就业创造良好的政策环境。不断帮助妇女转变就业观念,鼓励她们参加免费职业培训、创业培训,使其有一技之长;积极落实如小额贷款、税收等优惠政策,促进妇女就业。(二)应健全完善未成年人保护工作的组织协调机制留守儿童缺少关爱成为重要的社会问题。随着城镇化进程的不断推进,留守儿童问题已经成为一个社会问题,而且成上升趋势。父母双方在外的留守儿童有x%以上随祖辈生活,由于父母不在身边,亲情缺失,监护不力,留守儿童几乎生活在无限制状态下。主要存在以下问题:一是身体素质不佳。
《奇偶性》内容选自人教版A版第一册第三章第三节第二课时;函数奇偶性是研究函数的一个重要策略,因此奇偶性成为函数的重要性质之一,它的研究也为今后指对函数、幂函数、三角函数的性质等后续内容的深入起着铺垫的作用.课程目标1、理解函数的奇偶性及其几何意义;2、学会运用函数图象理解和研究函数的性质;3、学会判断函数的奇偶性.数学学科素养1.数学抽象:用数学语言表示函数奇偶性;2.逻辑推理:证明函数奇偶性;3.数学运算:运用函数奇偶性求参数;4.数据分析:利用图像求奇偶函数;5.数学建模:在具体问题情境中,运用数形结合思想,利用奇偶性解决实际问题。重点:函数奇偶性概念的形成和函数奇偶性的判断;难点:函数奇偶性概念的探究与理解.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
一、复习回顾,温故知新1. 任意角三角函数的定义【答案】设角 它的终边与单位圆交于点 。那么(1) (2) 2.诱导公式一 ,其中, 。终边相同的角的同一三角函数值相等二、探索新知思考1:(1).终边相同的角的同一三角函数值有什么关系?【答案】相等(2).角 -α与α的终边 有何位置关系?【答案】终边关于x轴对称(3).角 与α的终边 有何位置关系?【答案】终边关于y轴对称(4).角 与α的终边 有何位置关系?【答案】终边关于原点对称思考2: 已知任意角α的终边与单位圆相交于点P(x, y),请同学们思考回答点P关于原点、x轴、y轴对称的三个点的坐标是什么?【答案】点P(x, y)关于原点对称点P1(-x, -y)点P(x, y)关于x轴对称点P2(x, -y) 点P(x, y)关于y轴对称点P3(-x, y)
幂函数是在继一次函数、反比例函数、二次函数之后,又学习了单调性、最值、奇偶性的基础上,借助实例,总结出幂函数的概念,再借助图像研究幂函数的性质.课程目标1、理解幂函数的概念,会画幂函数y=x,y=x2,y=x3,y=x-1,y=x 的图象;2、结合这几个幂函数的图象,理解幂函数图象的变化情况和性质;3、通过观察、总结幂函数的性质,培养学生概括抽象和识图能力.数学学科素养1.数学抽象:用数学语言表示函数幂函数;2.逻辑推理:常见幂函数的性质;3.数学运算:利用幂函数的概念求参数;4.数据分析:比较幂函数大小;5.数学建模:在具体问题情境中,运用数形结合思想,利用幂函数性质、图像特点解决实际问题。重点:常见幂函数的概念、图象和性质;难点:幂函数的单调性及比较两个幂值的大小.
本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.3.2节《对数的运算》。其核心是弄清楚对数的定义,掌握对数的运算性质,理解它的关键就是通过实例使学生认识对数式与指数式的关系,分析得出对数的概念及对数式与指数式的 互化,通过实例推导对数的运算性质。由于它还与后续很多内容,比如对数函数及其性质,这也是高考必考内容之一,所以在本学科有着很重要的地位。解决重点的关键是抓住对数的概念、并让学生掌握对数式与指数式的互化;通过实例推导对数的运算性质,让学生准确地运用对数运算性质进行运算,学会运用换底公式。培养学生数学运算、数学抽象、逻辑推理和数学建模的核心素养。1、理解对数的概念,能进行指数式与对数式的互化;2、了解常用对数与自然对数的意义,理解对数恒等式并能运用于有关对数计算。
学生已经学习了指数运算性质,有了这些知识作储备,教科书通过利用指数运算性质,推导对数的运算性质,再学习利用对数的运算性质化简求值。课程目标1、通过具体实例引入,推导对数的运算性质;2、熟练掌握对数的运算性质,学会化简,计算.数学学科素养1.数学抽象:对数的运算性质;2.逻辑推理:换底公式的推导;3.数学运算:对数运算性质的应用;4.数学建模:在熟悉的实际情景中,模仿学过的数学建模过程解决问题.重点:对数的运算性质,换底公式,对数恒等式及其应用;难点:正确使用对数的运算性质和换底公式.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。一、 情景导入回顾指数性质:(1)aras=ar+s(a>0,r,s∈Q).(2)(ar)s= (a>0,r,s∈Q).(3)(ab)r= (a>0,b>0,r∈Q).那么对数有哪些性质?如 要求:让学生自由发言,教师不做判断。而是引导学生进一步观察.研探.
对数与指数是相通的,本节在已经学习指数的基础上通过实例总结归纳对数的概念,通过对数的性质和恒等式解决一些与对数有关的问题.课程目标1、理解对数的概念以及对数的基本性质;2、掌握对数式与指数式的相互转化;数学学科素养1.数学抽象:对数的概念;2.逻辑推理:推导对数性质;3.数学运算:用对数的基本性质与对数恒等式求值;4.数学建模:通过与指数式的比较,引出对数定义与性质.重点:对数式与指数式的互化以及对数性质;难点:推导对数性质.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。一、 情景导入已知中国的人口数y和年头x满足关系 中,若知年头数则能算出相应的人口总数。反之,如果问“哪一年的人口数可达到18亿,20亿,30亿......”,该如何解决?要求:让学生自由发言,教师不做判断。而是引导学生进一步观察.研探.
函数在高中数学中占有很重要的比重,因而作为函数的第一节内容,主要从三个实例出发,引出函数的概念.从而就函数概念的分析判断函数,求定义域和函数值,再结合三要素判断函数相等.课程目标1.理解函数的定义、函数的定义域、值域及对应法则。2.掌握判定函数和函数相等的方法。3.学会求函数的定义域与函数值。数学学科素养1.数学抽象:通过教材中四个实例总结函数定义;2.逻辑推理:相等函数的判断;3.数学运算:求函数定义域和求函数值;4.数据分析:运用分离常数法和换元法求值域;5.数学建模:通过从实际问题中抽象概括出函数概念的活动,培养学生从“特殊到一般”的分析问题的能力,提高学生的抽象概括能力。重点:函数的概念,函数的三要素。难点:函数概念及符号y=f(x)的理解。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。