同志们:今天,我们专门召开这次现场观摩会议,主要目的是深入学习贯彻全市重点项目现场观摩暨冲刺三季度动员会议精神,总结全市文旅特色小镇和夜间文旅经济发展推进情况,观摩学习推广xx区的经验做法。昨天,我们现场观摩了xx文化旅游景观带、牛楼文化特色小镇及花海彩田景区夜间旅游项目。刚才,xx区、xx市、xx镇、xx街道、东方左岸、等闲谷艺术粮仓分别作了典型发言。大家讲的都很好,这些经验做法,不仅可参观、可学习,而且可复制。希望大家互相学习、互相借鉴、共同提高。下面,我以“奋力冲刺三季度、全力决胜下半年,确保圆满完成全年目标任务”为主题,讲四点意见,与大家共勉。一、奋力冲刺三季度、全力决胜下半年,就要亮一亮成绩清单,把发展的信心“提”起来今年以来,全系统在市委、市政府的坚强领导下,提高站位、强化担当、狠抓落实,各项工作成效显著、亮点纷呈。(一)疫情防控力度大。认真落实疫情防控各项要求,深入开展“利剑行动”,无论是文化旅游,还是新闻出版,还是广播电影,疫情防控均做到了有力有效,我市首创的“六个关键环节情况不间断报送”“五个零”长效包保机制两项做法均被省文旅厅在全省推广,并在全省会议上作了典型发言。(二)产业恢复速度快。分6批次推进13类共1151家文旅经营单位复工复产,暂退123家旅行社质保金1693万元,提前兑付44家文旅企业奖励资金183万元,提前免除1780名导游会员注册费40余万元,提前启动文化旅游惠民消费季活动,发放惠民消费券6万余张,举办线上、线下政策解读培训班5期,有效拉动了文旅企业复工复产。
自2022年3月18日开工建设以来,该项目在加快推进建设的同时,加大现场安全、质量隐患排查力度,确保隐患整改闭合落实到位,齐心协力推进项目建设。项目建成后,将有机结合跨境电商进出口多种模式,集货分拣、保税备货、暂存加工及线上线下服务,引入海外仓、边境仓、退货仓等多样物流仓储功能,着力将阿拉山口打造成为“一带一路”跨境贸易物流战略性集散枢纽、跨境电商综合试验区前沿阵地、综保区国内外商品展示中心。近两年,阿拉山口市还实施了一批公路口岸通关能力项目。其中,针对公路口岸原有两车道客货混用、查验设施设置不合理、出境车辆长时间排队等待等问题,实施了公路口岸通关能力二期项目,项目总投资1.2亿元,全程实现智能化、数字化的通关模式,新建双向四车道道路,并将海关h986前置(分别新建2个h986、车体检查室)。目前,已建成的公路口岸通关能力提升二期项目与集中查验中心闭合联接,实现进出口货物换装、查验、通关等多功能叠加。一个项目就是一个新的增长点,一批项目就是一个新的增长极。回首来路,一个个项目发展的画卷,起笔不凡,落字精彩。展望未来,在各级各部门的共同努力下,这幅画卷定会愈发绚丽多彩。
一是抓基础工作提升。精准识别方面。根据省扶贫办安排部署,开展两次建档立卡动态调整工作,新识别贫困户xxx户xxxx人,整户清退xxx户xxx人,进一步提高识别精准度。因户施策方面。针对贫困户的致贫原因、要素条件和脱贫需求,全面实施“一户一方案、一人一措施”,高质量完成全区xxxxx户xxxxxx人“一户一方案,一人一措施”的制定工作。数据提升方面。开发国办实时监测系统,定期监测和结果通报,不断提升国办系统数据质量。全年进行了xx次数据质量疑点查询,x次全区数据质量双月排名通报。同时加强部门联动,为组织、农委、发改、林业、住建、民政、人社、卫计、教育等部门开展信息比对比对xx次以上。
说教材>是人教版小学数学五年级上册第五单元P64的内容。在学习本节课之前学生已经认识了等式与方程,这便为本节课的学习(构建等量关系的数学模型)打下一定的基础,同时也为以后解简单方程埋下伏笔,因此本节课内容也是本章中的一个重点。基于本节内容的特点,我将本节课的教学目标确定为:1.知识与技能:理解等式的性质并用语言表述,能利用等式的性质解决简单问题;2.过程与方法:在实验操作、讨论、归纳等活动中,经历探究等式基本性质的过程;3.情感态度与价值观:使学生积极参与数学活动,体验探索等式基本性质的挑战性与得出数学结论的确定性。教学重难点:了解等式的基本性质,并能简单运用。说学情:小学五年级的学生已具备一定的思考能力,又乐于动手操作、合作探究。因此教学中我引导学生认真观察-独立思考-自主探究-合作交流,遵循由浅入深,由具体到抽象的规律,为学生创设一个和谐的学习环境,让孩子们在探索中交流、感受、理解和概括出等式的基本性质。
方法总结:平行线与角的大小关系、直线的位置关系是紧密联系在一起的.由两直线平行的位置关系得到两个相关角的数量关系,从而得到相应角的度数.探究点四:平行于同一条直线的两直线平行如图所示,AB∥CD.求证:∠B+∠BED+∠D=360°.解析:证明本题的关键是如何使平行线与要证的角发生联系,显然需作出辅助线,沟通已知和结论.已知AB∥CD,但没有一条直线既与AB相交,又与CD相交,所以需要作辅助线构造同位角、内错角或同旁内角,但是又要保证原有条件和结论的完整性,所以需要过点E作AB的平行线.证明:如图所示,过点E作EF∥AB,则有∠B+∠BEF=180°(两直线平行,同旁内角互补).又∵AB∥CD(已知),∴EF∥CD(如果两条直线都和第三条直线平行,那么这两条直线也互相平行),∴∠FED+∠D=180°(两直线平行,同旁内角互补).∴∠B+∠BEF+∠FED+∠D=180°+180°(等式的性质),即∠B+∠BED+∠D=360°.方法总结:过一点作一条直线或线段的平行线是我们常作的辅助线.
(三)如图, 中, ,AB=6厘米,BC=8厘米,点 从点 开始,在 边上以1厘米/秒的速度向 移动,点 从点 开始,在 边上以2厘米/秒的速度向点 移动.如果点 , 分别从点 , 同时出发,经几秒钟,使 的面积等于 ?拓展:如果把BC边的长度改为7cm,对本题的结果有何影响?(四)本课小结列方程解应用题的一般步骤:1、 审题:分析相关的量2、 设元:把相关的量符号化,设定一个量为X,并用含X的代数式表示相关的量3、 列方程:把量的关系等式化4、 解方程5、 检验并作答(五)布置作业1、请欣赏一道借用苏轼诗词《念奴娇·赤壁怀古》的头两句改编而成的方程应用题, 解读诗词(通过列方程,算出周瑜去世时的年龄)大江东去浪淘尽,千古风流数人物,而立之年督东吴,早逝英年两位数,十位恰小个位三,个位平方与寿符,哪位学子算得快,多少年华属周瑜?本题强调对古文化诗词的阅读理解,贯通数学的实际应用。有两种解题思路:枚举法和方程法。
①演示动画,理解大爆炸宇宙论②主要观点:? 大约150亿年前,我们所处的宇宙全部以粒子的形式、极高的温度、极大的密度,被挤压在一个“原始火球”中。? 大爆炸使物质四散出击,宇宙空间不断膨胀,温度也相应下降,后来相继出现在宇宙中的所有星系、恒星、行星乃至生命。2、其它宇宙形成理¬——稳定理论3、大胆猜测:宇宙的将来史蒂芬·霍金是英国物理学家,他提出的黑洞理论和宇宙无边界的设想成了现代宇宙学的重要基石。霍金的宇宙无边界的设想是这样的:第一,宇宙是无边的。第二,宇宙不是一个可以任意赋予初始条件或边界的一般系统。霍金预言宇宙有两种结局:永远膨胀下去,不断地扩大,我们将看到所有星系的星球老化、死亡,剩下我们孤零零的,在一片黑暗当中。或者会塌缩而在大挤压处终结科学巨人霍金:探索的精神)
1)正方形的边长为4cm,则周长为( ),面积为( ) ,对角线长为( );2))正方形ABCD中,对角线AC、BD交于O点,AC=4 cm,则正方形的边长为( ), 周长为( ),面积为( )3)在正方形ABCD中,AB=12 cm,对角线AC、BD相交于O,OA= ,AC= 。4) 1、正方形具有而矩形不一定具有的性质是( ) A、四个角相等 B、对角线互相垂直平分 C、对角互补 D、对角线相等. 5)、正方形具有而菱形不一定具有的性质( ) A、四条边相等 B对角线互相垂直平分 C对角线平分一组对角 D对角线相等. 6)、正方形对角线长6,则它的面积为_________ ,周长为________. 7)、顺次连接正方形各边中点的小正方形的面积是原正方形面积的( )A.1/2 B.1/3 C.1/4 D.1/ 5四:范例讲解:1、(课本P21例1)学生自己阅读课本内容、注意证明过程的书写2、 如图,分别以△ABC的边AB,AC为一边向外画正方形AEDB和正方形ACFG,连接CE,BG.求证:BG=CE
在Rt△ABC中,AC=AB2+BC2=12+12=2(cm),∴FC=AC-AF=2-1(cm),∴BE=2-1(cm).方法总结:正方形被对角线分成4个等腰直角三角形,因此在正方形中解决问题时常用到等腰三角形的性质与直角三角形的性质.【类型三】 利用正方形的性质证明线段相等如图,已知过正方形ABCD的对角线BD上一点P,作PE⊥BC于点E,PF⊥CD于点F,求证:AP=EF.解析:由PE⊥BC,PF⊥CD知四边形PECF为矩形,故有EF=PC,这时只需说明AP=CP,由正方形对角线互相垂直平分可知AP=CP.证明:连接AC,PC,如图.∵四边形ABCD为正方形,∴BD垂直平分AC,∴AP=CP.∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四边形PECF为矩形,∴PC=EF,∴AP=EF.方法总结:(1)在正方形中,常利用对角线互相垂直平分证明线段相等;(2)无论是正方形还是矩形,经常连接对角线,这样可以使分散的条件集中.
解:设正比例函数的表达式为y1=k1x,一次函数的表达式为y2=k2x+b.∵点A(4,3)是它们的交点,∴代入上述表达式中,得3=4k1,3=4k2+b.∴k1=34,即正比例函数的表达式为y=34x.∵OA=32+42=5,且OA=2OB,∴OB=52.∵点B在y轴的负半轴上,∴B点的坐标为(0,-52).又∵点B在一次函数y2=k2x+b的图象上,∴-52=b,代入3=4k2+b中,得k2=118.∴一次函数的表达式为y2=118x-52.方法总结:根据图象确定一次函数的表达式的方法:从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.【类型三】 根据实际问题确定一次函数的表达式某商店售货时,在进价的基础上加一定利润,其数量x与售价y的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5千克时的售价.
四个不同类型的问题由浅入深,学生能从不同角度掌握求一次函数的方法.对于问题4,教师可引导学生分析,并教学生要学会画图,利用图象分析问题,体会数形结合方法的重要性.学生若出现解题格式不规范的情况,教师应纠正并给予示范,训练学生规范答题的习惯.第五环节课时小结内容:总结本课知识与方法1.本节课主要学习了怎样确定一次函数的表达式,在确定一次函数的表达式时可以用待定系数法,即先设出解析式,再根据题目条件(根据图象、表格或具体问题)求出 , 的值,从而确定函数解析式。其步骤如下:(1)设函数表达式;(2)根据已知条件列出有关k,b的方程;(3)解方程,求k,b;4.把k,b代回表达式中,写出表达式.2.本节课用到的主要的数学思想方法:数形结合、方程的思想.目的:引导学生小结本课的知识及数学方法,使知识系统化.第六环节作业布置习题4.5:1,2,3,4目的:进一步巩固当天所学知识。教师也可根据学生情况适当增减,但难度不应过大.
一、导入新课成为一位科学家是无数有志青年的梦想,对物理的探究更是许多年轻的学子孜孜以求的,我们来看一下加来道雄的成长道路,或许能得到一些启发。(板书)一名物理学家的教育历程二、明确目标1.引导学生从生活出发,了解科学、认识科学2.引导学生以“教育历程”为重点,探讨其中表现的思想内涵。三、整体感知1.作者简介加来道雄,美籍日裔物理学家,毕业于美国哈佛大学,获加利福尼亚大学伯克利分校哲学博士学位,后任纽约市立大学城市学院理论物理学教授。主要著作有《超越爱因斯坦》(与特雷纳合著)《量子场论》《超弦导论》。2.本文的基本结构文章的题目是“一名物理学家的教育历程”,因此,叙述的顺序主要是历时性的。但是,作者开头就说“童年的两件趣事极大地丰富了我对世界的理解力,并且引导我走上成为一个理论物理学家的历程。”而“童年的两件趣事”作为文章的主要内容,又是共时性的叙述。这样的结构安排,使文章既脉络清楚,又重点突出。
注意强调概念理解不到位的方面:① tanA是一个完整的符号,它表示∠A的正切,记号里习惯省去角的符号“∠”,若用三个字母表示角则“∠”不能省略,如“∠ABC的正切表示为tan∠ABC”;② tanA没有单位,它表示一个比值,即直角三角形中∠A的对边与邻边的比;③ tanA不表示“tan”乘以“A”。通过给出直角三角形的任两边的长,让学生求∠A,∠B的正切及时强化学生对概念的3、正切函数的应用理解通过实际问题的解答进一步了解梯子的倾斜程度、坡度与正切函数的关系;对学生进行正切的变式训练,让学生理解不管角的位置如何改变,只要角的大小不变则其正切值是不变的。练习的安插注意梯度,让不同的学生有不同的发展。4、最后小结本节课的知识要点及注意点五、达标测试具体思路:把几个问题分为四个等级,方便对学生的了解;通过评价让学生对自己的学习也做到心中有数。
《0的认识和有关0的加减法》是《数学(人教版义务教育课程标准实验教科书)》一年级上册第29页的教学内容。数字0在生活中应用广泛,不同的应用体现出0的不同含义,有关0的加减法也具有其独特的规律和特点。本节课教学目标有下:1.通过游戏、活动,使学生理解0的含义,会读、会写数字0,了解数的顺序。2.使学生在情境体验中理解有关0的加、减法的含义,并能熟练计算。3.通过在数学活动中的观察、思考、讨论、探索,提高学生自主学习的意识和发现简单规律的能力。4.培养学生的想像力、语言表达能力和初步的推理应用能力。教学实录与评析:一、活动中认识0──关于0的含义和书写1.排排队──复习数的顺序。师:这节课,数字王国有几位小客人要到咱们教室找朋友。他们来了。(敲门声)
商会乡贤的见面活动要继续开展,不过方式方法有所改变,建议各县市理事以上的领导带头出钱出力,1月3日副会长董时川自费设宴邀请在襄工作和生活的荆州籍洪湖人士,开展了一次见面会。我同监事会主席余光辉及秘书处相关人员参加,活动开展的很好,知名人士纷纷表示会大力支持商会工作,愿为商会的发展建言献策,只要会员和乡贤有什么诉求,他们均愿意在力所能及的范围为会员和乡贤做贡献。建议其他县市理事以上的领导积极效仿,出钱、出力;
活动四:自主学习,尺规作图先阅读,再尝试作图,思考作图道理,小组讨论,“为什么作图过程中必须以大于1/2AB的长为半径画弧?”同桌演示尺规作图。最后折纸验证,使整个学习过程更加严谨。我将用下面这个课件给学生展示作图过程。再次回顾情境,让学生完成情境中的问题。(三)讲练结合,巩固新知第一个题目是直接运用性质解决问题,比较简单,面向全体学生。我还设计了第二个题目,想训练学生审题的能力。(四)课堂小结在学生们共同归纳总结本节课的过程中,让学生获得数学思考上的提高和感受成功的喜悦并进一步系统地完善本节课的知识。(五)当堂检测为了检测学生学习情况,我设计了当堂检测。第一个题目,让学生学会转化的思想来解决问题;第二个题目练习尺规作图。
1、现在每天生产的比原来多百分之几?2、原来每天生产的比现在少百分之几?3、现在每天生产的是原来的百分之几?第三层次请你为你的同桌出一道求“一个数比另一个数多(或少)百分之几”的应用题。第一组是基本练习,通过练习及两个答案的对比,让学生对单位“1”不同导致结果的不同印象深刻。第二组习题的情境设计为灾区人民急需的药品,在问题的设计上难度加大了,需要学生仔细思考,真正理解问题的含义后才能做对,锻炼了学生的思维能力。第三组请学生互相出题的目的是要检验学生对本课例题的理解程度,不仅深化了对知识的理解,而且还通过判断别人出题是否正确的同时锻炼了辨析的能力。总之,作为数学教师,本节课我力求数字简单化,让学生在情境中学习,在探究中提高,在合作中发展,体现数学活动是师生交往、共同发展的过程。
好景不长,真应了儿媳的那句话,孩子患有先天性心脏病,得赶紧做手术。王婆婆摸了摸缝在贴身衣兜里的两千块钱,这可是她这些年来起早贪黑拾荒换来的棺材钱啊!可一看到孩子那清澈的眼神,她心一横牙一咬,撕开了衣兜,双手颤抖着揭开一个用塑料布一层又一层包裹着的小袋子,就像一层层剥开自己的心。
“我说的不是这个,是老宅的,老宅的那个。”母亲的语气和神情有些焦急。我和母亲几乎把家里翻了个底朝天,也没找到母亲要找的钥匙。母亲坐下来,情绪有些低落。我说,妈,您就别总想着老宅了,咱又不回去住了,有没有钥匙都一样。母亲叹了一口气,开始收拾地上的凌乱。
十年春,齐师伐我。公将战。[1]曹刿请见。其乡人曰:“肉食者谋之,又何间焉?”刿曰:“肉食者鄙,未能远谋。”乃入见。问:“何以战?”公曰:“衣食所安,弗敢专也,必以分人。”对曰:“小惠未徧,民弗从也。”公曰:“牺牲玉帛,弗敢加也,必以信。”
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。