提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

直播脱口秀签约协议

  • 2024年上半年工作总结(乡镇、住房保障中心、巩固拓展脱贫攻坚成果)3篇

    2024年上半年工作总结(乡镇、住房保障中心、巩固拓展脱贫攻坚成果)3篇

    (一)发展特色产业。产业兴,则乡村兴,x镇不断探索特色产业发展,围绕打造“一村一品”,努力促进乡村振兴不断拓宽新途径。松南建成苗木基地x亩(其中村集体x亩),带动村民就业x余人;青贮玉米x吨、黄贮玉米秸秆x吨,可加工销售黄贮饲料x吨,预计实现经营性收入x万元以上,净收益x万元以上。乔圩种植羊肚菌菇、西瓜、反季节西红柿等年经营性收入可达x万元;陆郢连片种植西瓜近x亩、建设蔬菜大棚x个,可增加经营性收入近x万元,同时带动周边农户就业,实现户均增收x万余元。曹徐种植艾草近x亩,预计可增加村集体经济收入超过x万元。x村与村民合作建设草莓园,预计可实现村集体经济经营性收入x万余元;安集建设火龙果和葡萄采集园,可实现村集体经济收入x余万元。

  • 乡镇2024上半年巩固拓展脱贫攻坚成果与乡村振兴有效衔接工作总结

    乡镇2024上半年巩固拓展脱贫攻坚成果与乡村振兴有效衔接工作总结

    三注重统筹结合。做好脱贫户分类管理和开发式帮扶工作,结合排查结果,做好稳定脱贫户、一般脱贫户、脱贫监测户的分类工作,结合群众意愿和家庭实际,逐户完善针对性开发式帮扶计划,激发其内生动力。 三、重整改,促提升 一是做到整改到位。对日常排查发现的问题,不回避、不推脱、不遮掩、不护短,在件件有着落上发力。以务实的举措抓好整改,细化整改措施,逐一明确责任领导、责任单位和整改时限,按计划、分步骤地抓好整改落实。二是做到举一反三。**镇以落实整改、促进工作为切入点,解决突出问题,作为改进作风、推动工作、促进发展的重要手段,坚持举一反三,做到问题动态清零。三是做到守住底线。**镇严格落实“四个不摘”要求,不断巩固拓展“两不愁三保障”及饮水安全成果,落实好防止返贫动态监测和帮扶机制,坚决守住防返贫底线,从严从实从细、用心用力推进防止返贫监测帮扶工作。

  • 县乡村振兴局2022年上半年巩固拓展脱贫攻坚成果同乡村振兴有效衔接工作总结

    县乡村振兴局2022年上半年巩固拓展脱贫攻坚成果同乡村振兴有效衔接工作总结

    下一步,我们将坚持问题导向、效果导向,聚焦“五大振兴”,扎实做好谋规划、守底线、抓衔接、促振兴各项工作,推动全县巩固拓展脱贫攻坚成果同乡村振兴有效衔接工作不断取得新进展、新成效。 一是进一步深化“遇困即扶”。健全完善防返贫监测和帮扶机制,抓实网格化管理、信息化排查、精准化帮扶,确保早发现、早干预、早帮扶。严格落实我市监测对象“7天快速认定”的工作要求,全面引入第三方对开展入户调查评估,提高工作效率和识别精准度。压实“三类人员”风险消除工作责任,加强工作调度,加快风险消除速度。 二是进一步抓实产业就业。以产业帮扶项目为基础,加强带贫经营主体、致富带头人培育培养,完善利益联结机制,积极落实消费帮扶、小额信贷等政策,帮助农业经营主体不断发展壮大,带动更多农村群众增收致富。持续深化“1+6”就业帮扶长效机制,强化就业数据、岗位落实等工作调度,督促指导各地加快就业帮扶车间建设,有效帮助脱贫人口和监测对象持续端稳“铁饭碗”。

  • 高教版中职数学基础模块下册:8.2《直线的方程》教学设计

    高教版中职数学基础模块下册:8.2《直线的方程》教学设计

    课程名称数学课题名称8.2 直线的方程课时2授课日期2016.3任课教师刘娜目标群体14级五高班教学环境教室学习目标知识目标: (1)理解直线的倾角、斜率的概念; (2)掌握直线的倾角、斜率的计算方法. 职业通用能力目标: 正确分析问题的能力 制造业通用能力目标: 正确分析问题的能力学习重点直线的斜率公式的应用.学习难点直线的斜率概念和公式的理解.教法、学法讲授、分析、讨论、引导、提问教学媒体黑板、粉笔

  • 高教版中职数学基础模块下册:8.3《两条直线的位置关系》教案设计

    高教版中职数学基础模块下册:8.3《两条直线的位置关系》教案设计

    教 学 过 程教师 行为学生 行为教学 意图 *揭示课题 8.3 两条直线的位置关系(二) *创设情境 兴趣导入 【问题】 平面内两条既不重合又不平行的直线肯定相交.如何求交点的坐标呢? 图8-12 介绍 质疑 引导 分析 了解 思考 启发 学生思考 *动脑思考 探索新知 如图8-12所示,两条相交直线的交点,既在上,又在上.所以的坐标是两条直线的方程的公共解.因此解两条直线的方程所组成的方程组,就可以得到两条直线交点的坐标. 观察图8-13,直线、相交于点P,如果不研究终边相同的角,共形成四个正角,分别为、、、,其中与,与为对顶角,而且. 图8-13 我们把两条直线相交所成的最小正角叫做这两条直线的夹角,记作. 规定,当两条直线平行或重合时,两条直线的夹角为零角,因此,两条直线夹角的取值范围为. 显然,在图8-13中,(或)是直线、的夹角,即. 当直线与直线的夹角为直角时称直线与直线垂直,记做.观察图8-14,显然,平行于轴的直线与平行于轴的直线垂直,即斜率为零的直线与斜率不存在的直线垂直. 图8-14 讲解 说明 讲解 说明 引领 分析 仔细 分析 讲解 关键 词语 思考 思考 理解 思考 理解 记忆 带领 学生 分析 带领 学生 分析 引导 式启 发学 生得 出结 果

  • 人教A版高中数学必修二平面与平面垂直教学设计

    人教A版高中数学必修二平面与平面垂直教学设计

    6. 例二:如图,AB是⊙O的直径,PA垂直于⊙O所在的平面,C是圆周上的一点,且PA=AC,求二面角P-BC-A的大小. 解:由已知PA⊥平面ABC,BC在平面ABC内∴PA⊥BC∵AB是⊙O的直径,且点C在圆周上,∴AC⊥BC又∵PA∩AC=A,PA,AC在平面PAC内,∴BC⊥平面PAC又PC在平面PAC内,∴PC⊥BC又∵BC是二面角P-BC-A的棱,∴∠PCA是二面角P-BC-A的平面角由PA=AC知△PAC是等腰直角三角形∴∠PCA=45°,即二面角P-BC-A的大小是45°7.面面垂直定义一般地,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直,平面α与β垂直,记作α⊥β8. 探究:建筑工人在砌墙时,常用铅锤来检测所砌的墙面与地面是否垂直,如果系有铅锤的细绳紧贴墙面,工人师傅被认为墙面垂直于地面,否则他就认为墙面不垂直于地面,这种方法说明了什么道理?

  • 北师大版初中八年级数学上册平面直角坐标系说课稿2篇

    北师大版初中八年级数学上册平面直角坐标系说课稿2篇

    【设计意图】:这一环节的设计主要是为了培养学生自主学习的能力,让学生在自学中初步认识概念。通过材料的阅读,活动的实践,让学生在自画、自纠中,加深对概念的理解,培养学生良好的画图习惯。(三)例题讲解学生活动4:(由于例题都比较简单,所以让学生自己先做,教师巡视指导)例1、写出图中A、B、C、D、E各点的坐标。例2、在直角坐标系中,描出下列各点:A(4,3), B(-2,3),C(-4,-1),D(2,-2)。【设计意图】:例1的目的是给出点的位置,写出点的坐标。例2的目的是给出点的坐标,描出点。学完概念之后,马上对概念进行应用,达到巩固的目的。当时上课时这2道例题的解答都比较圆满,绝大部分学生都能顺利做出。

  • 北师大版初中数学八年级下册线段的垂直平分线说课稿2篇

    北师大版初中数学八年级下册线段的垂直平分线说课稿2篇

    活动四:自主学习,尺规作图先阅读,再尝试作图,思考作图道理,小组讨论,“为什么作图过程中必须以大于1/2AB的长为半径画弧?”同桌演示尺规作图。最后折纸验证,使整个学习过程更加严谨。我将用下面这个课件给学生展示作图过程。再次回顾情境,让学生完成情境中的问题。(三)讲练结合,巩固新知第一个题目是直接运用性质解决问题,比较简单,面向全体学生。我还设计了第二个题目,想训练学生审题的能力。(四)课堂小结在学生们共同归纳总结本节课的过程中,让学生获得数学思考上的提高和感受成功的喜悦并进一步系统地完善本节课的知识。(五)当堂检测为了检测学生学习情况,我设计了当堂检测。第一个题目,让学生学会转化的思想来解决问题;第二个题目练习尺规作图。

  • 小学数学人教版四年级上册《线段、射线、直线》说课稿

    小学数学人教版四年级上册《线段、射线、直线》说课稿

    (一)情境导入以鲜明的色彩、生动的画面演绎激光从地球发送到月球的全过程,既引出了学过的线段,又激发学生探究新知的欲望。(二) 质疑探究在讲授新课的过程中,我选择了多媒体的教学手段。这些教学手段的运用可以使抽象的知识具体化,枯燥的知识生动化,乏味的知识兴趣化。1、认识线段。通过多媒体演绎,使学生对于抽象的“线段”的认识建立在具体的生活模型基础上,有助于学生认识图形特征,形成表象,感受生活中处处有数学。这一环节主要引导学生回顾所学的线段知识,通过画图、说特征、举例子、讲授字母表示法这一系列活动,使学生进一步认识线段。2、 认识射线。多媒体课件形象、生动地演示了激光在宇宙中不断延长,再延长,通过直观感知,在头脑中建立“无限延长”的表象,帮助学生理解“无限延长”的含义。通过教师引导和小组合作,共同学习射线的画法、特征及字母表示法,进而把所学知识还原到生活当中,让学生明确数学与生活紧密联系。

  • 人教版高中语文必修2《直面挫折学习描写》教案2篇

    人教版高中语文必修2《直面挫折学习描写》教案2篇

    《贫寒是福天道酬勤石智勇从挫折中奋起》也许是自幼的贫寒生活塑造了石智勇内向的性格,即使是胸挂金灿灿的奖牌接受全场观众欢呼,他的表情也是略显羞涩的。小时候吃不饱肚皮的经历让他至今在“最喜欢的东西”一栏还填写着“食物”二字,而“穷人的孩子早当家”的坚韧,却又是促成他今日辉煌的动力。中国举重队副总教练陈文斌赛后说道:“智勇这几年练得很苦,今天终于有了这样的成绩,这是天道酬勤的结果。石智勇的奥运会金牌是中国男举的一次突破,我们非常激动。”在希腊神话里,命运女神总是让英雄历经磨难。石智勇也不例外。四年前的悉尼奥运会前夕,他在一次训练中扭伤脚踝,失去了参赛机会。“当时我伤心极了,不敢看电视直播,我怕参赛的选手成绩太低了。高点我还好一点,自欺欺人一下说,哎呀好高,自己去了也拿不了冠军,要是低了,自己没去,失去冠军机会,心里痛啊。后来结果出来,也不怎么高,心里真难受。”

  • 人教版新课标小学数学二年级上册直角的认识 说课稿

    人教版新课标小学数学二年级上册直角的认识 说课稿

    1、教材简析“直角的初步认识”这节课出自人教版义务教育课程标准实验教科书数学课本二年级上册第三单元。这单元的内容是角和直角的初步认识,是在学生已经初步认识长方形、正方形和三角形的基础上教学的。“直角的初步认识”是学生初步认识了角,知道角的各部分名称后,在这基础上出现的。教材通过引导学生观察国旗、椅子、双杆上的角,来说明这些角都是直角。然后让学生通过折纸做直角,加深对直角的认识。再借助三角板来说明要判断一个角是不是直角,可以用三角板上的直角来比一比。最后让学生学会用三角板画直角。学好这部分知识,能为今后进一步认识直角以及学习其它几何图形打下牢固的基础。2、教学目标(1)结合生活情境,使学生初步认识直角,会用三角板判断直角和会画直角。(2)通过看一看,比一比,折一折,画一画等教学活动,培养学生的观察能力,判断能力和实践能力。

  • 人教版新课标小学数学四年级上册直线、射线和角说课稿

    人教版新课标小学数学四年级上册直线、射线和角说课稿

    让学生通过观察和比较,明确连接两点的线段的长度叫做这两点间的距离,两点间的所有连线中线段的长度最短,进一步提升了学生的认识。二、认识角1、认识角的特征。谈话:通过一点,可以画无数条直线。那么通过一点,可以画多少条射线呢?(无数条)操作:请你从一点起,在练习纸上画出两条射线?提问:从一点起画两条射线,组成的图形叫什么?(板书:角)谈话:想一想,刚才我们是怎样画出角的?什么样的图形是角?(从一点引出两条射线所组成的图形是角)请一个学生上黑板画角,其余学生再画一个与前面不同的角,并和同学说说自己画的步骤。归纳:由一点引出的两条射线所组成的图形就是角。2.认识角的符号和各部分的名称。谈话:我们在二年级已经初步认识了角,通过今天的学习,我们将进一步加深对角的认识。请同学们打开课本第17页,自学例2,并和小组里的同学说一说你又了解了哪些有关角的知识。

  • 人教A版高中数学必修二空间点、直线、平面之间的位置关系教学设计

    人教A版高中数学必修二空间点、直线、平面之间的位置关系教学设计

    9.例二:如图,AB∩α=B,A?α, ?a.直线AB与a具有怎样的位置关系?为什么?解:直线AB与a是异面直线。理由如下:若直线AB与a不是异面直线,则它们相交或平行,设它们确定的平面为β,则B∈β, 由于经过点B与直线a有且仅有一个平面α,因此平面平面α与β重合,从而 , 进而A∈α,这与A?α矛盾。所以直线AB与a是异面直线。补充说明:例二告诉我们一种判断异面直线的方法:与一个平面相交的直线和这个平面内不经过交点的直线是异面直线。10. 例3 已知a,b,c是三条直线,如果a与b是异面直线,b与c是异面直线,那么a与c有怎样的位置关系?并画图说明.解: 直线a与直线c的位置关系可以是平行、相交、异面.如图(1)(2)(3).总结:判定两条直线是异面直线的方法(1)定义法:由定义判断两条直线不可能在同一平面内.

  • 人教A版高中数学必修二立体图形直观图教学设计

    人教A版高中数学必修二立体图形直观图教学设计

    1.直观图:表示空间几何图形的平面图形,叫做空间图形的直观图直观图往往与立体图形的真实形状不完全相同,直观图通常是在平行投影下得到的平面图形2.给出直观图的画法斜二侧画法观察:矩形窗户在阳光照射下留在地面上的影子是什么形状?眺望远处成块的农田,矩形的农田在我们眼里又是什么形状呢?3. 给出斜二测具体步骤(1)在已知图形中取互相垂直的X轴Y轴,两轴相交于O,画直观图时,把他们画成对应的X'轴与Y'轴,两轴交于O'。且使∠X'O'Y'=45°(或135°)。他们确定的平面表示水平面。(2)已知图形中平行于X轴或y轴的线段,在直观图中分别画成平行于X'轴或y'轴的线段。(3)已知图形中平行于X轴的线段,在直观图中保持原长度不变,平行于Y轴的线段,在直观图中长度为原来一半。4.对斜二测方法进行举例:对于平面多边形,我们常用斜二测画法画出他们的直观图。如图 A'B'C'D'就是利用斜二测画出的水平放置的正方形ABCD的直观图。其中横向线段A'B'=AB,C'D'=CD;纵向线段A'D'=1/2AD,B'C'=1/2BC;∠D'A'B'=45°,这与我们的直观观察是一致的。5.例一:用斜二测画法画水平放置的六边形的直观图(1)在六边形ABCDEF中,取AD所在直线为X轴,对称轴MN所在直线为Y轴,两轴交于O',使∠X'oy'=45°(2)以o'为中心,在X'上取A'D'=AD,在y'轴上取M'N'=½MN。以点N为中心,画B'C'平行于X'轴,并且等于BC;再以M'为中心,画E'F'平行于X‘轴并且等于EF。 (3)连接A'B',C'D',E'F',F'A',并擦去辅助线x轴y轴,便获得正六边形ABCDEF水平放置的直观图A'B'C'D'E'F' 6. 平面图形的斜二测画法(1)建两个坐标系,注意斜坐标系夹角为45°或135°;(2)与坐标轴平行或重合的线段保持平行或重合;(3)水平线段等长,竖直线段减半;(4)整理.简言之:“横不变,竖减半,平行、重合不改变。”

  • 点到直线的距离公式教学设计人教A版高中数学选择性必修第一册

    点到直线的距离公式教学设计人教A版高中数学选择性必修第一册

    4.已知△ABC三个顶点坐标A(-1,3),B(-3,0),C(1,2),求△ABC的面积S.【解析】由直线方程的两点式得直线BC的方程为 = ,即x-2y+3=0,由两点间距离公式得|BC|= ,点A到BC的距离为d,即为BC边上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面积为4.5.已知直线l经过点P(0,2),且A(1,1),B(-3,1)两点到直线l的距离相等,求直线l的方程.解:(方法一)∵点A(1,1)与B(-3,1)到y轴的距离不相等,∴直线l的斜率存在,设为k.又直线l在y轴上的截距为2,则直线l的方程为y=kx+2,即kx-y+2=0.由点A(1,1)与B(-3,1)到直线l的距离相等,∴直线l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)当直线l过线段AB的中点时,A,B两点到直线l的距离相等.∵AB的中点是(-1,1),又直线l过点P(0,2),∴直线l的方程是x-y+2=0.当直线l∥AB时,A,B两点到直线l的距离相等.∵直线AB的斜率为0,∴直线l的斜率为0,∴直线l的方程为y=2.综上所述,满足条件的直线l的方程是x-y+2=0或y=2.

  • 两直线的交点坐标教学设计人教A版高中数学选择性必修第一册

    两直线的交点坐标教学设计人教A版高中数学选择性必修第一册

    1.直线2x+y+8=0和直线x+y-1=0的交点坐标是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程组{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交点坐标是(-9,10).答案:B 2.直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,则k的值为( )A.-24 B.24 C.6 D.± 6解析:∵直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,可设交点坐标为(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故选A.答案:A 3.已知直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,若l1⊥l2,则点P的坐标为 . 解析:∵直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,联立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴点P的坐标为(3,3).答案:(3,3) 4.求证:不论m为何值,直线(m-1)x+(2m-1)y=m-5都通过一定点. 证明:将原方程按m的降幂排列,整理得(x+2y-1)m-(x+y-5)=0,此式对于m的任意实数值都成立,根据恒等式的要求,m的一次项系数与常数项均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤

  • 直线的点斜式方程教学设计人教A版高中数学选择性必修第一册

    直线的点斜式方程教学设计人教A版高中数学选择性必修第一册

    【答案】B [由直线方程知直线斜率为3,令x=0可得在y轴上的截距为y=-3.故选B.]3.已知直线l1过点P(2,1)且与直线l2:y=x+1垂直,则l1的点斜式方程为________.【答案】y-1=-(x-2) [直线l2的斜率k2=1,故l1的斜率为-1,所以l1的点斜式方程为y-1=-(x-2).]4.已知两条直线y=ax-2和y=(2-a)x+1互相平行,则a=________. 【答案】1 [由题意得a=2-a,解得a=1.]5.无论k取何值,直线y-2=k(x+1)所过的定点是 . 【答案】(-1,2)6.直线l经过点P(3,4),它的倾斜角是直线y=3x+3的倾斜角的2倍,求直线l的点斜式方程.【答案】直线y=3x+3的斜率k=3,则其倾斜角α=60°,所以直线l的倾斜角为120°.以直线l的斜率为k′=tan 120°=-3.所以直线l的点斜式方程为y-4=-3(x-3).

  • 直线与圆的位置关系教学设计人教A版高中数学选择性必修第一册

    直线与圆的位置关系教学设计人教A版高中数学选择性必修第一册

    切线方程的求法1.求过圆上一点P(x0,y0)的圆的切线方程:先求切点与圆心连线的斜率k,则由垂直关系,切线斜率为-1/k,由点斜式方程可求得切线方程.若k=0或斜率不存在,则由图形可直接得切线方程为y=b或x=a.2.求过圆外一点P(x0,y0)的圆的切线时,常用几何方法求解设切线方程为y-y0=k(x-x0),即kx-y-kx0+y0=0,由圆心到直线的距离等于半径,可求得k,进而切线方程即可求出.但要注意,此时的切线有两条,若求出的k值只有一个时,则另一条切线的斜率一定不存在,可通过数形结合求出.例3 求直线l:3x+y-6=0被圆C:x2+y2-2y-4=0截得的弦长.思路分析:解法一求出直线与圆的交点坐标,解法二利用弦长公式,解法三利用几何法作出直角三角形,三种解法都可求得弦长.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交点A(1,3),B(2,0),故弦AB的长为|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.设两交点A,B的坐标分别为A(x1,y1),B(x2,y2),则由根与系数的关系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的长为√10.解法三圆C:x2+y2-2y-4=0可化为x2+(y-1)2=5,其圆心坐标(0,1),半径r=√5,点(0,1)到直线l的距离为d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦长为("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦长|AB|=√10.

  • 直线的两点式方程教学设计人教A版高中数学选择性必修第一册

    直线的两点式方程教学设计人教A版高中数学选择性必修第一册

    解析:①过原点时,直线方程为y=-34x.②直线不过原点时,可设其方程为xa+ya=1,∴4a+-3a=1,∴a=1.∴直线方程为x+y-1=0.所以这样的直线有2条,选B.答案:B4.若点P(3,m)在过点A(2,-1),B(-3,4)的直线上,则m= . 解析:由两点式方程得,过A,B两点的直线方程为(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又点P(3,m)在直线AB上,所以3+m-1=0,得m=-2.答案:-2 5.直线ax+by=1(ab≠0)与两坐标轴围成的三角形的面积是 . 解析:直线在两坐标轴上的截距分别为1/a 与 1/b,所以直线与坐标轴围成的三角形面积为1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三个顶点A(0,4),B(-2,6),C(-8,0).(1)求三角形三边所在直线的方程;(2)求AC边上的垂直平分线的方程.解析(1)直线AB的方程为y-46-4=x-0-2-0,整理得x+y-4=0;直线BC的方程为y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直线AC的方程为x-8+y4=1,整理得x-2y+8=0.(2)线段AC的中点为D(-4,2),直线AC的斜率为12,则AC边上的垂直平分线的斜率为-2,所以AC边的垂直平分线的方程为y-2=-2(x+4),整理得2x+y+6=0.

  • 直线的一般式方程教学设计人教A版高中数学选择性必修第一册

    直线的一般式方程教学设计人教A版高中数学选择性必修第一册

    解析:当a0时,直线ax-by=1在x轴上的截距1/a0,在y轴上的截距-1/a>0.只有B满足.故选B.答案:B 3.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:设所求直线方程为x-2y+c=0,把点(1,0)代入可求得c=-1.所以所求直线方程为x-2y-1=0.故选A.4.已知两条直线y=ax-2和3x-(a+2)y+1=0互相平行,则a=________.答案:1或-3 解析:依题意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直线.(1)求实数m的范围;(2)若该直线的斜率k=1,求实数m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直线,则m2-3m+2与m-2不能同时为0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.

上一页123...252627282930313233343536下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!