2、了解几种剪刀的用途,知道它们是生活中常用的工具。3、发展幼儿手部肌肉的灵活性。 4、牢记用剪常规。【活动准备】 窗花剪纸一张、花枝剪、理发剪、剪指刀、幼儿用剪刀。 【活动过程】一、导入 小朋友们平时都爱玩,都喜欢做游戏,小朋友们,你们玩过这种游戏吗?(师示范)你们知道这个游戏叫什么名字吗?(石头、剪刀、金刚锤,师着重用手示范剪刀)平时你们都见过什么样的剪刀啊?(剪花的、剪指甲的……) 二、认识各种剪刀 今天老师也给小朋友带来了几把剪刀,大家来仔细看一看,摸一摸,说一说:这些剪刀哪些地方一样?哪些地方不一样?(幼儿边看边说)教师小结:(1)相同点:都叫剪刀;都可用来剪东西;都有一个轴;都有刀刃。(2)不同点:外形不同,用途不同。剪刀的外形决定了它的用途,教师手持实物问:既然剪刀的外形决定了它们的用途,那么小朋友根据你观察到的这几种剪刀的外形,猜一猜它们是剪什么的?(幼儿:可能是修剪树枝的、也可能是理发的……),好!让我们通过课件来看一下,它们到底是做什么用的?
2、了解雨与人类的关系。3、激发幼儿观察、发现、探索自然的兴趣。 活动准备1、木偶台、木偶小兔、兔妈妈。2、酒精灯、烧杯、玻璃片、玻璃杯、火柴。3、投影机、故事《小水滴旅行记》、有关幻灯片、磁带。 活动过程一、教师木偶表演,提出尝试问题 教师以兔妈妈带小兔出去玩,忽然天下雨了,小兔问妈妈:“天上为什么会下雨?”的故事情景导放课题,提出问题:“小朋友,你知道天上为什么会下雨吗?” 二、小朋友做小实验(幼儿第一次尝试,分组活动)1、幼儿点燃酒精灯,把水加热。2、教师提出尝试问题:仔细观察一下,你发现了什么?3、小结:水热了就会有水蒸气,许多水蒸气向上跑的现象叫做“蒸发”。4、讨论:你平时看到过“蒸发”现象吗? (发散性思维)
2、学习按一定标准分类的方法。(是否能吸铁的标准) 3、激发对磁铁吸铁现象的探索兴趣。【活动准备】 1、每人一盘材料,内有磁铁和铁片、回形针、螺丝帽、钥匙、硬币、纽扣、木块、布条、玻璃球、塑料玩具等。 2、在教室中增加一些铁制用具供幼儿探索。【活动过程】 1、激发幼儿探索的兴趣。 “小朋友,请你看看你面前的盘子里有些什么?”“请你玩玩盘子里的东西,说说你发现了什么?”(有的东西会粘在一个黑块上)
2、创造性地设计花的礼物,使幼儿进一步萌发爱花、护花的意识。 活动准备: 场地布置(花仙子的花园) 金银花露、玫瑰花茶、菊花茶、桂花糕、蜂蜜、花卉精油、熏香用品、干花袋、花朵装饰品、春姑娘图片、花朵头箍、纸、记号笔。 活动流程: 观察环境,引出主题—观察尝试,操作发现—自我创造、描述构思—情感激发 一、观察环境,感知花的美1、带入场地:今天我们去花仙子的花园玩,好吗?2、观察环境:你们觉得花仙子的花园怎么样?为什么漂亮? 看见花你感到怎么样?
2、在玩乐中发现哪些液体可以吹出泡泡,并了解泡泡液体受光的折射可呈现美丽多彩的颜色。 3、初步探索出不同形状的圈吹出的泡泡都是一致的。 4、尝试用简单的符号学做记录。【活动准备】 1、割好的大饮料瓶五个、清水、肥皂液、洗衣粉液、白猫洗涤剂液、泡泡水。 2、每个幼儿一个吸管,不同形状的小铁圈若干(长方形、圆形、三角形)。 3、做好的笑脸图形和不高兴脸型图形若干个、裁割好的吹塑板五张、大夹子五个、推动的黑板一块、彩色打印的五种液体的图案、大数字1、2、3、4、5。小桌子五张、三张画好长方形、正方形、圆形的纸、一支记号笔 4、先把五种液体的图案分别贴在五张吹塑板上,然后再把五个数字分别贴在五个图案的上面,把图案遮挡好后用夹子夹住吹塑板放在五张桌子上。【活动过程】 一、课程导入:教师以游戏<<吹泡泡>>引起幼儿的兴趣,和幼儿谈话。 二、探索活动:哪种液体可以吹出泡泡。 教师介绍:小朋友们,你们吹过泡泡吗?(吹过)我这儿有五种液体,他们分别是清水、肥皂液、洗衣粉水、洗涤剂水和泡泡水,请你们猜一猜哪种液体能吹出泡泡?哪种液体吹出的泡泡最漂亮,哪种液体吹不出泡泡。 1、请幼儿进行大胆尝试,启发幼儿自己学做记录。幼儿自己拿一根吸管挨着吹,觉得不能吹泡泡的拿一个不高兴的脸贴在用大夹子撑起的液体板放上,能吹泡泡的拿一个笑脸也贴在液体板上。 2、鼓励幼儿进行尝试,教师巡回指导。 3、先让幼儿观看幼儿自己做的记录,然后老师依次把数字拿开,露出背后的液体让幼儿初步了解每一组都是什么液体。 4、教师从1号桌依次吹泡泡与幼儿猜想进行对照来验证幼儿自己的试验是否正确。
2、引导幼儿运用多种泥工技能,进行泥工创作,启发幼儿合理利用辅助材料和工具塑造作品,运用分泥、连接、捏边等技能塑造组合物体。3、鼓励幼儿能够按自己的意愿进行创造活动,充分发挥幼儿想象力、创造力。 [活动准备]1、准备大量不同种类的土(红土、黄土、沙土等)、水、玩泥工具、和好的泥(少量)、各种泥玩具。2、准备相关的图片资料,如:水土流失图、填海造田图。3、录音机、《泥娃娃》歌曲磁带。 [活动过程]1、感知观察土。 出示准备好的土,请幼儿仔细观察、感知。“请小朋友用手摸一摸,用小棍翻一翻,看看土是什么样的?闻闻有什么气味?看看土里有什么?各种 土有什么不同?”
[活动准备]1、幼儿从家中带来不同种类的肥皂:香皂、透明皂、药皂、旅游皂、液体皂等;2、新式肥皂的幻灯片;3、肥皂架子;4、幼儿提前了解自带的肥皂 [活动过程] 一、调动幼儿已有生活经验,认识肥皂种类的多样性和肥皂的作用。1、猜一猜,引发幼儿对活动的兴趣。 引导语:有一样东西,只要你和它交上朋友,它就会让你变得讲卫生爱清洁,而且我们天天都用它,这样东西是什么呢?2、幼儿能用有节奏的儿歌说出肥皂的名称和作用。 设计提问:你带的是什么肥皂?它是用来干什么的?3、经验提升:知道肥皂的种类很多,而且每种肥皂都有它的专用性。 二、感知肥皂的形状、颜色、气味、大小等的特点和多样性,增加幼儿对肥皂的喜爱之
高斯(Gauss,1777-1855),德国数学家,近代数学的奠基者之一. 他在天文学、大地测量学、磁学、光学等领域都做出过杰出贡献. 问题1:为什么1+100=2+99=…=50+51呢?这是巧合吗?试从数列角度给出解释.高斯的算法:(1+100)+(2+99)+…+(50+51)= 101×50=5050高斯的算法实际上解决了求等差数列:1,2,3,…,n,"… " 前100项的和问题.等差数列中,下标和相等的两项和相等.设 an=n,则 a1=1,a2=2,a3=3,…如果数列{an} 是等差数列,p,q,s,t∈N*,且 p+q=s+t,则 ap+aq=as+at 可得:a_1+a_100=a_2+a_99=?=a_50+a_51问题2: 你能用上述方法计算1+2+3+… +101吗?问题3: 你能计算1+2+3+… +n吗?需要对项数的奇偶进行分类讨论.当n为偶数时, S_n=(1+n)+[(2+(n-1)]+?+[(n/2+(n/2-1)]=(1+n)+(1+n)…+(1+n)=n/2 (1+n) =(n(1+n))/2当n为奇数数时, n-1为偶数
1.对称性与首末两端“等距离”的两个二项式系数相等,即C_n^m=C_n^(n"-" m).2.增减性与最大值 当k(n+1)/2时,C_n^k随k的增加而减小.当n是偶数时,中间的一项C_n^(n/2)取得最大值;当n是奇数时,中间的两项C_n^((n"-" 1)/2) 与C_n^((n+1)/2)相等,且同时取得最大值.探究2.已知(1+x)^n =C_n^0+C_n^1 x+...〖+C〗_n^k x^k+...+C_n^n x^n 3.各二项式系数的和C_n^0+C_n^1+C_n^2+…+C_n^n=2n.令x=1 得(1+1)^n=C_n^0+C_n^1 +...+C_n^n=2^n所以,(a+b)^n 的展开式的各二项式系数之和为2^n1. 在(a+b)8的展开式中,二项式系数最大的项为 ,在(a+b)9的展开式中,二项式系数最大的项为 . 解析:因为(a+b)8的展开式中有9项,所以中间一项的二项式系数最大,该项为C_8^4a4b4=70a4b4.因为(a+b)9的展开式中有10项,所以中间两项的二项式系数最大,这两项分别为C_9^4a5b4=126a5b4,C_9^5a4b5=126a4b5.答案:1.70a4b4 126a5b4与126a4b5 2. A=C_n^0+C_n^2+C_n^4+…与B=C_n^1+C_n^3+C_n^5+…的大小关系是( )A.A>B B.A=B C.A<B D.不确定 解析:∵(1+1)n=C_n^0+C_n^1+C_n^2+…+C_n^n=2n,(1-1)n=C_n^0-C_n^1+C_n^2-…+(-1)nC_n^n=0,∴C_n^0+C_n^2+C_n^4+…=C_n^1+C_n^3+C_n^5+…=2n-1,即A=B.答案:B
新知探究国际象棋起源于古代印度.相传国王要奖赏国际象棋的发明者,问他想要什么.发明者说:“请在棋盘的第1个格子里放上1颗麦粒,第2个格子里放上2颗麦粒,第3个格子里放上4颗麦粒,依次类推,每个格子里放的麦粒都是前一个格子里放的麦粒数的2倍,直到第64个格子.请给我足够的麦粒以实现上述要求.”国王觉得这个要求不高,就欣然同意了.假定千粒麦粒的质量为40克,据查,2016--2017年度世界年度小麦产量约为7.5亿吨,根据以上数据,判断国王是否能实现他的诺言.问题1:每个格子里放的麦粒数可以构成一个数列,请判断分析这个数列是否是等比数列?并写出这个等比数列的通项公式.是等比数列,首项是1,公比是2,共64项. 通项公式为〖a_n=2〗^(n-1)问题2:请将发明者的要求表述成数学问题.
【课时安排】 1课时【教学过程】1.回顾梳理、归纳总结。师:我们学过哪些立体图形?生:长方体、正方体、圆柱体、圆锥体师:它们分别有哪些特征?师生共同总结立体图形的特征。 课件演示:长方体的特征:6个面是长方形(特殊情况有两个对面是正方形)相对的面完全相同;12条棱,相对的4条棱长度相等;8个顶点。正方体的特征:6个面都相等,都是正方形;12条棱都相等;8个顶点。圆柱的特征:上下两个面是完全相同的圆形,侧面是一个曲面,沿高展开一般是个长方形。上下一样粗;有无数条高,每条高长度都相等。
今天在国旗下,我们大家一起重温一个不少同学早已熟悉的故事,题目是《一箭断,十箭难折》。这个故事讲的是:很久很久以前,有个国王,他有十个儿子,这十个儿子平时因争权夺利,相互间勾心斗角,扰得整个皇宫不得安宁。一天,老国王得了重病,他自己也知道快要不行了。于是就把十个儿子都叫到身旁,拿出十支箭来,让十个儿子每人折一支,十个儿子轻轻一折,就将箭折断了。然后老国王又拿出十支箭,并把这十支箭紧紧地捆扎在一起,让十个儿子折,可十个儿子用尽力气,谁也折不断。这时十个儿子都明白了老国王这样做的目的。同学们听到这里,你们也明白了吗?这个故事告诉了我们什么道理呢?告诉我们集体力量大。其实,在生活中我们已经有过许多这方面的体验:许多许多的石头堆积起来可以变成一座巨大的高山;许多许多的砖头垒筑起来,可以砌成万里长城。
4.已知△ABC三个顶点坐标A(-1,3),B(-3,0),C(1,2),求△ABC的面积S.【解析】由直线方程的两点式得直线BC的方程为 = ,即x-2y+3=0,由两点间距离公式得|BC|= ,点A到BC的距离为d,即为BC边上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面积为4.5.已知直线l经过点P(0,2),且A(1,1),B(-3,1)两点到直线l的距离相等,求直线l的方程.解:(方法一)∵点A(1,1)与B(-3,1)到y轴的距离不相等,∴直线l的斜率存在,设为k.又直线l在y轴上的截距为2,则直线l的方程为y=kx+2,即kx-y+2=0.由点A(1,1)与B(-3,1)到直线l的距离相等,∴直线l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)当直线l过线段AB的中点时,A,B两点到直线l的距离相等.∵AB的中点是(-1,1),又直线l过点P(0,2),∴直线l的方程是x-y+2=0.当直线l∥AB时,A,B两点到直线l的距离相等.∵直线AB的斜率为0,∴直线l的斜率为0,∴直线l的方程为y=2.综上所述,满足条件的直线l的方程是x-y+2=0或y=2.
一、情境导学在一条笔直的公路同侧有两个大型小区,现在计划在公路上某处建一个公交站点C,以方便居住在两个小区住户的出行.如何选址能使站点到两个小区的距离之和最小?二、探究新知问题1.在数轴上已知两点A、B,如何求A、B两点间的距离?提示:|AB|=|xA-xB|.问题2:在平面直角坐标系中能否利用数轴上两点间的距离求出任意两点间距离?探究.当x1≠x2,y1≠y2时,|P1P2|=?请简单说明理由.提示:可以,构造直角三角形利用勾股定理求解.答案:如图,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即两点P1(x1,y1),P2(x2,y2)间的距离|P1P2|=?x2-x1?2+?y2-y1?2.你还能用其它方法证明这个公式吗?2.两点间距离公式的理解(1)此公式与两点的先后顺序无关,也就是说公式也可写成|P1P2|=?x2-x1?2+?y2-y1?2.(2)当直线P1P2平行于x轴时,|P1P2|=|x2-x1|.当直线P1P2平行于y轴时,|P1P2|=|y2-y1|.
【答案】B [由直线方程知直线斜率为3,令x=0可得在y轴上的截距为y=-3.故选B.]3.已知直线l1过点P(2,1)且与直线l2:y=x+1垂直,则l1的点斜式方程为________.【答案】y-1=-(x-2) [直线l2的斜率k2=1,故l1的斜率为-1,所以l1的点斜式方程为y-1=-(x-2).]4.已知两条直线y=ax-2和y=(2-a)x+1互相平行,则a=________. 【答案】1 [由题意得a=2-a,解得a=1.]5.无论k取何值,直线y-2=k(x+1)所过的定点是 . 【答案】(-1,2)6.直线l经过点P(3,4),它的倾斜角是直线y=3x+3的倾斜角的2倍,求直线l的点斜式方程.【答案】直线y=3x+3的斜率k=3,则其倾斜角α=60°,所以直线l的倾斜角为120°.以直线l的斜率为k′=tan 120°=-3.所以直线l的点斜式方程为y-4=-3(x-3).
解析:①过原点时,直线方程为y=-34x.②直线不过原点时,可设其方程为xa+ya=1,∴4a+-3a=1,∴a=1.∴直线方程为x+y-1=0.所以这样的直线有2条,选B.答案:B4.若点P(3,m)在过点A(2,-1),B(-3,4)的直线上,则m= . 解析:由两点式方程得,过A,B两点的直线方程为(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又点P(3,m)在直线AB上,所以3+m-1=0,得m=-2.答案:-2 5.直线ax+by=1(ab≠0)与两坐标轴围成的三角形的面积是 . 解析:直线在两坐标轴上的截距分别为1/a 与 1/b,所以直线与坐标轴围成的三角形面积为1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三个顶点A(0,4),B(-2,6),C(-8,0).(1)求三角形三边所在直线的方程;(2)求AC边上的垂直平分线的方程.解析(1)直线AB的方程为y-46-4=x-0-2-0,整理得x+y-4=0;直线BC的方程为y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直线AC的方程为x-8+y4=1,整理得x-2y+8=0.(2)线段AC的中点为D(-4,2),直线AC的斜率为12,则AC边上的垂直平分线的斜率为-2,所以AC边的垂直平分线的方程为y-2=-2(x+4),整理得2x+y+6=0.
解析:当a0时,直线ax-by=1在x轴上的截距1/a0,在y轴上的截距-1/a>0.只有B满足.故选B.答案:B 3.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:设所求直线方程为x-2y+c=0,把点(1,0)代入可求得c=-1.所以所求直线方程为x-2y-1=0.故选A.4.已知两条直线y=ax-2和3x-(a+2)y+1=0互相平行,则a=________.答案:1或-3 解析:依题意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直线.(1)求实数m的范围;(2)若该直线的斜率k=1,求实数m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直线,则m2-3m+2与m-2不能同时为0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
学了市场营销使我了解到市场营销作为一门艺术和科学有基悠久的历史和特殊的历史作用和意义。在商品和市场产生的同时市场营销手段也就运而生,在不断促进市场经济发展的同时自己也得到了长足的发展,市场营销现已成为一门独立的学科。曾经以为市场营销摇不可及,在我的印象中是那么的抽象,但是经过学习我意识到营销已影响到社会市场生活的每一个角落、每一个时段、每一个元素。例如说,我们去超市购物,去商店,去逛街都能遇到它,市场营销出现在我们生活的每一个角落。
中国是一个有着五千年历史的文明古国,中华民族素来是一个温文尔雅,落落大方,见义勇为,谦恭礼让的文明礼仪之邦。华夏儿女的举手投足、音容笑貌,无不体现一个人的气质与素养。荀子云:“不学礼无以立,人无礼则不生,事无礼则不成,国无礼则不宁。”文明礼仪是我们学习、生活的根基,是我们健康成长的臂膀。孔子云“已所不欲,勿施于人”。文明礼仪时刻提醒我们周围还有别人的存在,我们的行为会相互影响,人与人之间应该建立一种现代化的文明和谐的人际关系!
学了市场营销使我了解到市场营销作为一门艺术和科学有基悠久的历史和特殊的历史作用和意义。在商品和市场产生的同时市场营销手段也就运而生,在不断促进市场经济发展的同时自己也得到了长足的发展,市场营销现已成为一门独立的学科。曾经以为市场营销摇不可及,在我的印象中是那么的抽象,但是经过学习我意识到营销已影响到社会市场生活的每一个角落、每一个时段、每一个元素。例如说,我们去超市购物,去商店,去逛街都能遇到它,市场营销出现在我们生活的每一个角落。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。