问题2、如何用测角仪测量一个低处物体的俯角呢?和测量仰角的步骤是一样的,只不过测量俯角时,转动度盘,使度盘的直径对准低处的目标,记下此时铅垂线所指的度数,同样根据“同角的余角相等”,铅垂线所指的度数就是低处的俯角.活动三:测量底部可以到达的物体的高度.“底部可以到达”,就是在地面上可以无障碍地直接测得测点与被测物体底部之间的距离.要测旗杆MN的高度,可按下列步骤进行:(如下图)1.在测点A处安置测倾器(即测角仪),测得M的仰角∠MCE=α.2.量出测点A到物体底部N的水平距离AN=l.3.量出测倾器(即测角仪)的高度AC=a(即顶线PQ成水平位置时,它与地面的距离).根据测量数据,就能求出物体MN的高度.在Rt△MEC中,∠MCE=α,AN=EC=l,所以tanα= ,即ME=tana·EC=l·tanα.又因为NE=AC=a,所以MN=ME+EN=l·tanα+a.
如图,课外数学小组要测量小山坡上塔的高度DE,DE所在直线与水平线AN垂直.他们在A处测得塔尖D的仰角为45°,再沿着射线AN方向前进50米到达B处,此时测得塔尖D的仰角∠DBN=61.4°,小山坡坡顶E的仰角∠EBN=25.6°.现在请你帮助课外活动小组算一算塔高DE大约是多少米(结果精确到个位).解析:根据锐角三角函数关系表示出BF的长,进而求出EF的长,得出答案.解:延长DE交AB延长线于点F,则∠DFA=90°.∵∠A=45°,∴AF=DF.设EF=x,∵tan25.6°=EFBF≈0.5,∴BF=2x,则DF=AF=50+2x,故tan61.4°=DFBF=50+2x2x=1.8,解得x≈31.故DE=DF-EF=50+31×2-31=81(米).所以,塔高DE大约是81米.方法总结:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形.
解在角度单位状态为“度”的情况下(屏幕显示出 ),按下列顺序依次按键:显示结果为36.538 445 77.再按键:显示结果为36゜32′18.4.所以,x≈36゜32′.例5 已知cot x=0.1950,求锐角x.(精确到1′)分析根据tan x= ,可以求出tan x的值,然后根据例4的方法就可以求出锐角x的值.四、课堂练习1. 使用计算器求下列三角函数值.(精确到0.0001)sin24゜,cos51゜42′20″,tan70゜21′,cot70゜.2. 已知锐角a的三角函数值,使用计算器求锐角a.(精确到1′)(1)sin a=0.2476; (2)cos a=0.4174;(3)tan a=0.1890; (4)cot a=1.3773.五、学习小结内容总结不同计算器操作不同,按键定义也不一样。同一锐角的正切值与余切值互为倒数。在生活中运用计算器一定要注意计算器说明书的保管与使用。方法归纳在解决直角三角形的相关问题时,常常使用计算器帮助我们处理比较复杂的计算。
然后,她沿着坡度是i=1∶1(即tan∠CED=1)的斜坡步行15分钟抵达C处,此时,测得A点的俯角是15°.已知小丽的步行速度是18米/分,图中点A、B、E、D、C在同一平面内,且点D、E、B在同一水平直线上.求出娱乐场地所在山坡AE的长度(参考数据:2≈1.41,结果精确到0.1米).解析:作辅助线EF⊥AC于点F,根据速度乘以时间得出CE的长度,通过坡度得到∠ECF=30°,通过平角减去其他角从而得到∠AEF=45°,即可求出AE的长度.解:作EF⊥AC于点F,根据题意,得CE=18×15=270(米). ∵tan∠CED=1,∴∠CED=∠DCE=45°.∵∠ECF=90°-45°-15°=30°,∴EF=12CE=135米.∵∠CEF=60°,∠AEB=30°,∴∠AEF=180°-45°-60°-30°=45°,∴AE=2EF=1352≈190.4(米).所以,娱乐场地所在山坡AE的长度约为190.4米.方法总结:解决本题的关键是能借助仰角、俯角和坡度构造直角三角形,并结合图形利用三角函数解直角三角形.
解析:正多边形的边心距、半径、边长的一半正好构成直角三角形,根据勾股定理就可以求解.解:(1)设正三角形ABC的中心为O,BC切⊙O于点D,连接OB、OD,则OD⊥BC,BD=DC=a.则S圆环=π·OB2-π·OD2=πOB2-OD2=π·BD2=πa2;(2)只需测出弦BC(或AC,AB)的长;(3)结果一样,即S圆环=πa2;(4)S圆环=πa2.方法总结:正多边形的计算,一般是过中心作边的垂线,连接半径,把内切圆半径、外接圆半径、边心距,中心角之间的计算转化为解直角三角形.变式训练:见《学练优》本课时练习“课后巩固提升”第4题【类型四】 圆内接正多边形的实际运用如图①,有一个宝塔,它的地基边缘是周长为26m的正五边形ABCDE(如图②),点O为中心(下列各题结果精确到0.1m).(1)求地基的中心到边缘的距离;(2)已知塔的墙体宽为1m,现要在塔的底层中心建一圆形底座的塑像,并且留出最窄处为1.6m的观光通道,问塑像底座的半径最大是多少?
解析:点E是BC︵的中点,根据圆周角定理的推论可得∠BAE=∠CBE,可证得△BDE∽△ABE,然后由相似三角形的对应边成比例得结论.证明:∵点E是BC︵的中点,即BE︵=CE︵,∴∠BAE=∠CBE.∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.方法总结:圆周角定理的推论是和角有关系的定理,所以在圆中,解决相似三角形的问题常常考虑此定理.三、板书设计圆周角和圆心角的关系1.圆周角的概念2.圆周角定理3.圆周角定理的推论本节课的重点是圆周角与圆心角的关系,难点是应用所学知识灵活解题.在本节课的教学中,学生对圆周角的概念和“同弧所对的圆周角相等”这一性质较容易掌握,理解起来问题也不大,而对圆周角与圆心角的关系理解起来则相对困难,因此在教学过程中要着重引导学生对这一知识的探索与理解.还有些学生在应用知识解决问题的过程中往往会忽略同弧的问题,在教学过程中要对此予以足够的强调,借助多媒体加以突出.
解析:(1)由切线的性质得AB⊥BF,因为CD⊥AB,所以CD∥BF,由平行线的性质得∠ADC=∠F,由圆周角定理的推论得∠ABC=∠ADC,于是证得∠ABC=∠F;(2)连接BD.由直径所对的圆周角是直角得∠ADB=90°,因为∠ABF=90°,然后运用解直角三角形解答.(1)证明:∵BF为⊙O的切线,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半径为203.方法总结:运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.
A.大力深化大数据、人工智能等研发应用B.高举新时代改革开放旗帜,继续全面深化改革、全面扩大开放C.加强国际交流与合作,培育竞争新优势D.建立更加公平、更可持续的社会保障制度 2、发展是解决我国一切问题的基础和关键。全面建设社会主义现代化国家,必须始终抓好发展 这个基础和关键。中国积极谋求发展,就必须 ( )①引领、主导全球规则的制定②要加快构建以国内大循环为主体、国内国际双循环相互促进的新发展格局③掌握国际竞争主动权④积极寻求新的经济增长点A. ①②③ B.①②④ C.①③④ D.②③④3、“中国制造2025”构想的提出,对于中国传统制造业的转型升级影响深远。新一代信息技术 和传统工业的深度融合已成为中国新一轮制造发展制高点,我们要把智能制造作为中国制造未 来的主攻方向,实现由“中国制造”向“中国创造”“中国智造”转型。这有利于 ( )①促进我国经济实现由实体经济向虚拟经济转变②通过新技术将传统产业打造为高新技术产业③推动传统产业优化升级,从而进一步提升我国在全球分工中的地位④催生新兴产业,形成新的经济增长点
(四) 作业分析与设计意图这是一项基于素质教育导向的整体式课时作业设计,结合信息技术下的思政课与信息 技术的深度有效融合,不仅完成了培育学生课程核心素养提高政治认同的目标,而且有效 的激发了学生的学习兴趣。作业以学生的“微型讨论会”为主要情境,设置了三项任务,层层 递进,螺旋式上升。作业以填写“活动记录”的形式呈现。教师从“掌握必备知识, 理论联系实 际 ”“培养核心素养,提高政治认同”等 5 个维度对作业进行评价,以“优秀”“良好” “合格”三个等级呈现。学生通过“微型讨论会”的方式,畅谈自己对中国在国际社会中的 地位和作用及相关外交政策的了解,通过该作业设计,教师可以引导学生关注国家和世界 局势,树立正确的人生观,世界观和价值观。 以增强学生的政治认同和责任意识。
8. 2022 年,俄乌冲突以来,美方不断泛化国家安全概念,滥用出口管制措施, 多次以所谓“人权”等为由,对中国企业无理打压,严重破坏国际经贸规则。 同时美国不顾中方多次警告,将航母驶入南海进行挑衅,美国国会操弄“台湾地图牌” 。面对美方的无端打压和干涉,我国应该 ( )A.谦让机遇,合作共赢,与美国共发展B.抓住机遇,迎接挑战,积极谋求发展C.集中力量,增强实力,掌控世界趋势D.主动迎击,不畏强权,巩固霸主地位9. 中华诗词浓缩了中华文化的精华,经过岁月的沉淀仍然闪烁着时代的光芒。 从下列经典诗句中得到的启示,你认为不正确的是 ( )A.“万物并育而不相害,道并行而不相悖”—在国际交往中我国要坚持合作、共赢的理念,做到互信互利 B.“国虽大,好战必亡;天下虽平,忘战必亡”— 中国要屹立于世界民族之林,必须通过战争树立国际地位C.“天与不取,反受其咎;时至不行,反受其殃”—机遇稍纵即逝,我们要抓住机遇,勇于创新,追求发展D.“同心掬得满庭芳”—各族人民要铸牢中华民族共同体意识,手足相亲、守望相助10.从漫画“新四大发明”中,下列认识和理解正确的有 ( )①我们要培育壮大经济发展新动能②我国把提升发展质量放在首位③中国决定着世界经济发展的趋势④中国与世界各国共享发展成果
预设 简·爱是一个坚强朴实、刚柔并济、独立自主、积极进取的女性。她出身卑微,相貌平凡,但并不以此自卑。她蔑视权贵的骄横,嘲笑他们的愚笨,显示出自立自强的人格和美好的理想追求。她有顽强的生命力,从不向命运低头,最后有了自己所向往的美好生活。简·爱对自己的思想和人格有着理性的认识,对自己的幸福和情感有着坚定的追求。在她身上,体现了新女性的特点:自尊、自重、自立、自强。六、探究小说的主题思想【设计意图】在理解小说内容和人物形象的基础上,进一步探究小说的主题思想。小组讨论,《简·爱》的主题思想是什么?请简要分析。预设 《简·爱》阐释了这样一个主题:人的价值=尊严+爱。小说中简·爱的人生追求有两个基本“旋律”:富于激情、幻想和反抗精神;追求超越个人幸福的至高境界。这部小说通过叙述一个孤女坎坷不幸的人生经历,成功塑造了一个不安于现状、不甘于受辱、敢于抗争的女性形象,反映了一个小写的人要成为一个大写的人的渴望。
【新课导入】演讲比赛是提高同学口语和表达能力的一项竞赛,不仅要求参赛者有良好的文字功底和修养,同时也要有良好的口才和表达能力,以及很强的感染力,通过自己的叙述将观众带入自己的世界,同时演讲比赛也是一个人综合素质的体现,要想更多的人认识自己,了解自己,首先就得学会说话,学会推销自己,通过自己的介绍让同学了解自己,喜欢自己,好的演讲口才终身受用。【重点解读】充分的赛前准备是比赛成功的基础。建议大家:(1)举办小组选拔赛。选择同一题目撰写演讲稿的同学自由组成小组,先在小组内进行选拔比赛,每组选出一到两名同学参加班级演讲。小组选拔时,一方面要重视演讲的内容,同时要考虑现场的声音、语气、表情、动作等,通过综合评价,推举优秀代表。
本环节通过评委宣布比赛规则和评分细则,为下面比赛活动中,学生学会欣赏和评价演讲打下基础。三、八仙过海赛一赛(主持人组织演讲比赛)演讲比赛的程序:1.各组参赛同学抽签,确定演讲顺序。2.参加比赛的同学按照顺序进行演讲,每位选手演讲完毕,评委现场打分。3.评委根据评分细则评分,去掉最高分和最低分,记分员核算出选手的平均分,并由主持人公布最后得分。4.每位参赛者演讲结束,评委和教师进行简要点评。5.第二轮由每组得分最高的选手进行即兴演讲拉票,决出班级前三名。6.主持人宣布比赛结果。7.活动结束。【设计意图】本环节通过演讲比赛和评价两个活动的交互进行,让学生进一步理解演讲技巧的具体运用方法,从而提高演讲能力。在整个演讲活动中,学生组织活动和实施活动的能力可以得到充分地展现和发挥。四、尺短寸长评一评1.精彩的演讲结束了,在这次演讲比赛中,给你留下深刻印象的演讲有哪些?请说明理由。(生自由发言,对演讲活动进行总结评价)2.在这次精彩的演讲比赛中,大家有哪些收获?请结合活动过程具体来谈。
(1)指名读。评议。用自己体会的感情比赛朗读。(抓住“趴”、“四面八方”、“挖呀、挖呀”、“欢呼”;“终于”、“一……就”等词语来朗读体会小朋友心地纯善。“我们欢呼着胜利,欢呼着炸死了魔王,欢呼着救出了公主。”排比句写出了孩子们战胜邪恶、赢得胜利的无比兴奋的心情。指导读好。)(2)孩子们的故事是真的吗?妈妈为什么会被我们当作是公主?听老师老师朗读4、5自然段,学生思考。(我们太高兴了,我们被当时的情景感染了。)妈妈怎么会出现在身后?(结合第一自然段的“偷偷”来理解:“偷偷”说明我们怕大人知道批评我们贪玩,制止我们去玩。于是只好不告诉大人,私自去玩,还自以为大人不知道。可事实上,妈妈或许见我们玩得很高兴有意思,并没有责怪我们。只是见我们没按时回家有点担心我们,便找来了。引导学生充分说,来体会父母对孩子的爱。)
教学反思:本节课的重点在于使学生积极主动地参与知识的发生,发展过程。从而提高了学生探索、发现、解决问题及创新的能力。1、师生角色的定位:本节课很好地体现了以学生为主体的教育理念,充分体现出教师是教学的组织者、引导者和能起到促进作用的参与者的角色。2、教学策略的灵活性:这节课中先后使用了观察到游戏、游戏到探究新,又由探究新知到拓展延伸的灵活转化,使知识由浅到深的被学生所吸收,做到了循序渐进的教学原则。3、巩固练习的合理设计:本课练习的设计注重了题型的基础性、发散性、及拓展延伸性,习题的层次性、使班各个层次的学生都能参与到学习活动中,都能充分体会到学习给自己带来的成就感。激发了学习动机,促进了学生的求知欲,从而也提高了课堂教学的效率。
一、说教材《十六年前的回忆》是统编语文小学六年级下册第四单元中的一篇精读课文。本课的作者是李星华,通过对李大钊被捕前到被捕后的回忆,展示了革命先烈忠于革命事业的伟大精神和面对敌人坚贞不屈的高贵品质,表达了作者对父亲的敬仰与深切的怀念。除开头外,文章是按被捕前、被捕时、法庭上、被害后的顺序来叙述的。被捕前写父亲烧掉文件和书籍,工友阎振三被抓,反映出形势的险恶与处境的危险;被捕时写了敌人的心虚、残暴与父亲的处变不惊;法庭上描写了李大钊的镇定、沉着;被害后写了全家的无比沉痛。 本文是回忆录。作者采用第一人称的叙述方式,回忆了父亲被害的全过程,内容真实可信,语言朴素自然,既具有文学价值,又具有很强的史料价值。选编这篇课文的主要意图,一是使学生借助课文,激发对革命先烈的崇敬之情;二是引导学生领悟课文前后照应的写法。
一.说教材 1.教材所处的地位《庆祝奥林匹克运动复兴25周年》是人教版部编初中语文教材八年级下册第四单元“思想光芒”中的一篇经典演讲词。它是同学们接触过《 最后一次讲演》《应有格物致知精神》《我一生中的重要抉择》,初步了解、掌握关于演讲的一些技巧之后,再次让学生倾听那些穿越时空的声音,感受演讲精品的魅力,并总结、借鉴典范演讲的经验,在历练中提高演说才能。因为在现代社会中,良好的口语交际能力是公民的重要素养之一,它不但显示着一个人的语言水平,更体现着一个人的自信、智慧、教养与风度。2.教材分析 《庆祝奥林匹克运动复兴25周年》是顾拜旦于1919年4月在瑞士洛桑庆祝奥林匹克运动恢复25周年纪念会上的演说,是关于奥林匹克运动的重要文献。顾拜旦用诗歌般的语言阐述了奥林匹克精神的内涵与价值;以饱含喜悦的神情引领听众去联想奥林匹克精神无限美好的前景。这篇演说词和他的诗歌《体育颂》一起成为世界文化史和体育史上不朽的篇章。
教材分析:本课是一个实践活动课——制作年历。这节活动课是学生掌握了年、月、日知识后的综合应用。在制作过程中,学生会输出大量年、月、日的知识,经历从年具体到月再具体到日的过程。体现了年月日之间的内在联系。这节实践活动课可以说既是对年、月、日这一单元知识的总结,又体现了数学的应用性与趣味性。学情分析:三年级的学生具有一定的动手操作能力;有一定的小组合作意识和能力;具有一定的观察、发现、分析、交流和搜集资料的能力;同时还具有一定的生活经验,比较关注自己周围的事物,对自己熟悉的事物比较感兴趣,喜欢关注“有趣、好玩、新奇”的事物等。这些都为本次活动的学习得于顺利开展奠定了基础。根据以上分析,我为本课设定以下几个活动目标:知识与技能目标:通过活动复习巩固本学期所学的年、月、日的知识。
除了打击乐器的加入,为了更好的表现歌曲的情绪,让学生的表演具有民族风格,出示几幅维吾尔族舞蹈动作图片,自己创编,然后观看视频,让学生进行模仿和创编。通过动作表现歌曲的情绪、风格,在表演实践中加深对歌曲的理解,符合学生的认知规律。教师从动作、表情等方面进行指导,并给予充分的肯定和赞扬,让学生体验成功的快乐。分组创编动作表现歌曲然后请学生互评表演,教师总评。最后请几个孩子上台表演,一组打节拍,其他同学演唱在欢快的气氛中感受歌曲的特色。(三)课堂小结情感升华课堂小结,我以新疆是阿凡提的家乡,哪里美丽富饶,我们的家乡六安也是个好地方,同学们你能说说自己的家乡吗?延伸课堂引导学生好好学习建设我们美丽的皋城。本节课从三维立体的层面结合听,唱,说让孩子们在学会歌曲的同时了解新疆这个民族,了解地域文化,让音乐的课堂担起了文化传递的作用。
紧接着是升记号的认识。在这里我把升记号介绍给学生,教师先用电子琴演奏没有升记号的乐句,再演奏有升记号的乐句,学生听一听那一个音有变化。然后教师再分别把单独的有变化的一个音拿出来进行比较,最后用键盘图在幻灯片上展示。使学生更直观的去听去感受,使学生听觉与视觉互补。增强学生的参与意识,使复杂乏味枯燥的音乐知识变的趣味化,生动化,通过师生的共同参与,更加拉近了教师与学生的距离。最后是编创与活动.由于这首歌是以环保为主题,所以我用音乐与环境保护有机结合的融合,从而进行德育渗透,通过生生合作、和自主探究的方式来进行编创歌词。最后让学生用载歌载舞的形式表现歌曲.依托音乐本身的魅力培养学生主动学习,合作意识,探究精神,从目标的提出到过程的安排,学习方法的确定乃至学习成果的呈现,都让学生有更大的自主性,更多的实践性,更浓的创造性。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。