同学们,当你听到"流浪的人在外想念你,亲爱的妈妈,流浪的脚步走遍天涯,没有一个家,……"这脍炙人口的歌词时,是否记起了那首游子思乡的千古绝唱《天净沙秋思》?当你坐在餐桌前享用精美丰盛的晚餐时,是否记起了父母"谁知盘中餐,粒粒皆辛苦"的嘱咐?当你惊叹于戈壁滩的狂风吹沙时,是否忆起"大漠孤烟直,长河落日圆"的壮志豪情?古典诗词以其不可抗拒的魅力走进了我们的生活,为我们的生活增添了更多的美丽与奇妙。今天,让我们一起学习《蒹葭》这首诗歌,再一次用诗歌滋润我们渴求的心灵。
1、诗作引雁:同学们,有一种鸟,常常是文人墨客吟诗赋词入题的最爱,这种鸟很容易牵动人们的羁旅情思,令人睹鸟伤情、托鸟寄怀,从而留下许多浪漫、感人、富有诗意的作品,这种鸟就是秋寒南征、春暖北归的大雁。现在就让我们在这优美而略带忧伤情感的音乐中,一起回忆我们学过的有关大雁的优美诗句。学生汇报,教师展示。 征蓬出汉塞,归雁入胡天。——王维《使至塞上》 长风万里送秋雁,对此可以酣高楼。——李白《宣州谢眺楼饯别校书叔云》 乡书何处达?归雁洛阳边。——王湾《次北固山下》(思乡情怀) 塞下秋来风景异,衡阳雁去无留意。——范仲淹《渔家傲》 云中谁寄锦书来,雁字回时,月满西楼。—— 李清照《一剪梅》 2、引入课题:由此可见,中国人眼中的大雁是这样的富有诗情画意,是这样的充满浪漫色彩。那你想不想知道,外国人心中的大雁是怎样的吗?今天,就让我们跟随美国生态学家利奥波德一同走进大雁的世界。请大家打开课本111页,第十四课,大雁归来(出示课题和作者)
大家都知道,在中国文学史上有不少的文人用他们的笔墨描写过优美的山水,比如说我们以前学过: 唐 杜牧《江南春》: 千里莺啼绿映红,水村山郭酒旗风。南朝四百八十寺,多少楼台烟雨中。 杜甫《望岳》:岱宗夫如何? 齐鲁青未了。造化钟神秀,阴阳割昏晓。 荡胸生层云, 决眦入归鸟。 会当凌绝顶, 一览众山小。 郦道元在《三峡》中也有“春冬之时,则素湍绿潭,回清倒影。”这样引人入胜的景色。可以说优美的山水诗文不可枚举,那么今天让我们跟随柳宗元一起走进小石潭,看看又是怎样的一幅山水画呢?他又是怎样的心情写下这篇游记的呢?
陶渊明生于东晋末朝,出身于没落的地主官僚家庭。他少时颇有壮志,博学能文,任性不羁。当时社会动乱不安,他有志不得展。做过小官,由于不满官场的丑恶,弃官回乡,这时他四十一岁,从此过着“躬耕自资”的隐居生活。忧愤、饥寒、劳累、赢疾一起折磨着他,六十三岁去世。后称靖节先生。他所作的诗文,内容多描写农村生活,表现了优美的自然风光,抒发他热爱田园生活、乐于和农民来往和不愿与统治者同流合污的高尚感情;但也包含了乐天知命、消极适世的因素。在形式上一反当时华而不实的文风,明朗清新,质朴自然,善于抓住客观事物最突出的特征,淡淡几笔传神的表现它的形象,简洁含蓄而富有韵味,对后代作家有较大的影响。本文写作年代大约是宋永初二年(421年),其时陶渊明已经五十七岁了。他拒绝同刘格的来政权合作,不满黑暗的政治现实,同时由于他和农民接近,理解他们追求理想社会的愿望,所以写了这篇记和诗。
老师们、同学们:早上好!三月,是春风和煦、万木吐绿、百花盛开、欣欣向荣的美好季节,俗话说:“一年之际在于春。”人们把许多节日或者纪念日都放在了三月,我们走进三月,也就走进了三月的每一个有意义的节日。重要的节日或者纪念日就有下面这几个:3月5日:“向雷锋同志学习”纪念日,3月8日:国际劳动妇女节,3月12日:中国植树节,3月15日:国际消费者权益日,3月21日:世界睡眠日,3月22日:世界水日,3月23日:世界气象日。今天我讲的是大家可能还不太熟悉的一个纪念日:那就是全国中小学安全宣传教育日。这个教育日,是由国家有关部门发出的,确定每年三月最后一个周的星期一作为全国中小学生“安全教育日”。其目的是为推动中小学安全教育工作,降低少年儿童伤亡事故的发生率,保证少年儿童的健康成长。
爱国教育国旗下讲话稿:《祖国在我心中》小学老师,同学们:你们好!今天我要讲的题目是:祖国在我心中。每当星期一早晨,我们望着头顶徐徐升起的五星红旗,听着那庄严的国歌,总有一种亲切的感觉。五星红旗是我们祖国的象征,所有中国人在看到她时都像看到了自己的祖国一样,敬重之情油然而生。在我们这些中华后代的心中,祖国永远是最伟大的!“祖国在我心中”,简简单单的六个字,道尽了多少中华儿女的心声,正因为有这样一颗中国心
老师、同学们,大家早上好!每年三月份最后一周的周一是全国中小学生的安全教育日,今天是第21个全国中小学生安全教育日。我校决定将本周确定为安全教育周。在这周里,我校将要开展两个安全教育实践活动。为了让活动顺利进行,老师、同学们一定要牢记安全第一。安全教育是一个沉重的话题,虽然近年来安全教育越来越得到社会各界的重视,同学们的安全意识有所增强,但重大的伤亡事故仍时有发生。据有关部门统计,近年来,全国中小学每年非正常死亡人数达到16000多人,平均每天就有40多名中小学生不幸死亡。数字是枯燥的,但它的背后是一个个鲜活的生命,这就说明学校并不是一块安全的净土,校园安全形势依然非常严峻。作为老师,我们要有高度的安全意思,充分认识到安全工作的重要性和紧迫感。各位班主任要认真上好每周的安全教育课,将学生的安全工作摆在重要位置,做到经常教育,及时教育,教育到位,教育全面,若发现有安全隐患,要及时向学校汇报,防患于未然。对安全工作不能存有丝毫的麻痹侥幸的心理。本周是安全周,希望各位班主任对照我校安全周的活动安排,认真落实安全教育。
老师们、同学们,大家上午好!在全国第22个中小学生安全教育日来临之际,河南省教育厅和郑州市教育局今天联合在郑州市实验高级中学举行安全会议和学生的演练活动。我首先代表河南省教育厅向本次活动的承办单位表示衷心的感谢,向辛勤工作在教育一线的各位老师们表示崇高的敬意,向热爱生活,勤奋学习的各位同学表示亲切的慰问。今年的中小学生安全教育活动主题是“强化安全意识,提升安全素养”。我个人认为要想唱响活动,我们需要落实到每一个环节,需要大家做出以下“四个努力”:首先,校长要做出努力。大家知道,校长是学校安全的责任人,所以我们每一位校长在学校的各项工作当中,应该始终把学校的安全,师生的安全放在各项工作的首位。第二,要完善制度,明确责任。学校的教育教学活动、体育娱乐活动、社会实践活动,后勤保障、医疗服务等各方面,我们都要有完善的制度。要明确每一个单位、每一个部门,包括每一位教职工的责任。大家都知道,我这个岗位应该怎么做,防止出现漏洞。第三,我感觉到要根据各个学校的情况,及时全面的进行安全漏洞的排查,发现隐患及时处置,不留漏洞。校长如果把这些事情做好了,可以说,我们就是一个比较安全的校园,我们的责任就尽到了。
同学们:“全国中中职生安全教育日”是定在每年3月份的最后一个星期的星期一。今天是3月30日,是XX年3月份最后一个星期的周一,所以在此跟同学们谈以下几个全面:1、做好春季防病。春季是多种传染病流行的季节,同学们要注意个人卫生,勤洗手,教室勤通风,勤锻炼,不暴饮暴食。2、不允许玩火、玩电,防止人身伤害,防止意外事故的发生。禁止将爆竹、火柴、打火机等易燃、易爆品带入校园,更不允许将刀、弹弓、防真气枪等危险玩具带进校园。
解:设截取圆钢的长度为xmm.根据题意,得π(902)2x=131×131×81,解方程,得x=686.44π.答:截取圆钢的长度为686.44πmm.方法总结:圆钢由圆柱形变成了长方体,形状发生了变化,但是体积保持不变.“变形之前圆钢的体积=变形之后长方体的体积”就是我们所要寻找的等量关系.探究点三:面积变化问题将一个长、宽、高分别为15cm、12cm和8cm的长方体钢坯锻造成一个底面是边长为12cm的正方形的长方体钢坯.试问:是锻造前的长方体钢坯的表面积大,还是锻造后的长方体钢坯的表面积大?请你计算比较.解析:由锻造前后两长方体钢坯体积相等,可求出锻造后长方体钢坯的高.再计算锻造前后两长方体钢坯的表面积,最后比较大小即可.解析:设锻造后长方体的高为xcm,依题意,得15×12×8=12×12x.解得x=10.锻造前长方体钢坯的表面积为2×(15×12+15×8+12×8)=2×(180+120+96)=792(cm2),锻造后长方体钢坯的表面积为2×(12×12+12×10+12×10)=2×(144+120+120)=768(cm2).
【教学目标】(一)教学知识点能够利用描点法作出函数 的图象,并根据图象认识和理解二次函数 的性质;比较两者的异同.(二)能力训练要求:经历探索二次函数 图象的作法和性质的过程,获得利用图象研究函数性质的经验.(三)情感态度与价值观:通过学生自己的探索活动,达到对抛物线自身特点的认识和对二次函数性质的理解. 【重、难点】重点 :会画y=ax2的图象,理解其性质。难点:描点法画y=ax2的图象,体会数与形的相互联系。 【导学流程】 一、自主预习(用时15分钟)1.创设教学情境我们在教学了正比例函数、一次函数、反比例函数的定义后,都借助图像研究了它们的性质.而上节课我们所学的二次函数的图象是什么呢?本节课我们将从最简单的二次函数y=x2入手去研究
3.本学期我校还举行了新团员入团仪式。一批新团员庄严的举起右手宣誓成XX镇中心初级中学的一批新团员。五、总后勤工方面在本学期的教育教学工中总工在工中坚持发挥后盾用本着以教书育人育人教学的原则坚持履行学校的整体工步骤切实完成好学校的总后勤工。1.在后勤工中本着教学的识着力强化后勤队伍建设努力增强识。2.严格履行财制度规范财行。在经费使用方面执行预算审批制度在购物方面实行采购审批和政府采购制度杜了各种不正之风证了资金的效益最大化。3.学校和各班班主任签定了班班通责任书强了班班通设备管理。同时制定了《班级财产管理制度》把公物管理列入班主任考核内容之一强了财产管理。总之经过一学期全体师生的共同努力我们取得了一定的成绩但也有着不少的问题。我们学校的发展还需全体教职员工精诚团结继续发扬艰苦奋斗的精神我校可持续发展继续努力。
1.使学生掌握用描点法画出函数y=ax2+bx+c的图象。2.使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。让学生经历探索二次函数y=ax2+bx+c的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y=ax2+bx+c的性质。用描点法画出二次函数y=ax2+bx+c的图象和通过配方确定抛物线的对称轴、顶点坐标理解二次函数y=ax2+bx+c(a≠0)的性质以及它的对称轴(顶点坐标分别是x=-b2a、(-b2a,4ac-b24a)一、提出问题1.你能说出函数y=-4(x-2)2+1图象的开口方向、对称轴和顶点坐标吗?(函数y=-4(x-2)2+1图象的开口向下,对称轴为直线x=2,顶点坐标是(2,1)。2.函数y=-4(x-2)2+1图象与函数y=-4x2的图象有什么关系?(函数y=-4(x-2)2+1的图象可以看成是将函数y=-4x2的图象向右平移2个单位再向上平移1个单位得到的)
雨后天空的彩虹、河上架起的拱桥等都会形成一条曲线.问题1:这些曲线能否用函数关系式表示?问题2:如何画出这样的函数图象?二、合作探究探究点:二次函数y=x2和y=-x2的图象与性质【类型一】 二次函数y=x2和y=-x2的图象的画法及特点在同一平面直角坐标系中,画出下列函数的图象:(1)y=x2;(2)y=-x2.根据图象分别说出抛物线(1)(2)的对称轴、顶点坐标、开口方向及最高(低)点坐标.解析:利用列表、描点、连线的方法作出两个函数的图象即可.解:列表如下:x y) -2 -1 0 1 2y=x2 4 1 0 1 4 y=-x2 -4 -1 0 -1 -4 描点、连线可得图象如下:(1)抛物线y=x2的对称轴为y轴,顶点坐标为(0,0),开口方向向上,最低点坐标为(0,0);(2)抛物线y=-x2的对称轴为y轴,顶点坐标为(0,0),开口方向向下,最高点坐标为(0,0).方法总结:画抛物线y=x2和y=-x2的图象时,还可以根据它的对称性,先用描点法描出抛物线的一侧,再利用对称性画另一侧.
变式训练:见《学练优》本课时练习“课堂达标训练”第5题【类型二】 在同一坐标系中判断二次函数和一次函数的图象在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()解析:∵一次函数和二次函数都经过y轴上的点(0,c),∴两个函数图象交于y轴上的同一点,故B选项错误;当a>0时,二次函数的图象开口向上,一次函数的图象从左向右上升,故C选项错误;当a<0时,二次函数的图象开口向下,一次函数的图象从左向右下降,故A选项错误,D选项正确.故选D.方法总结:熟记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质(开口方向、对称轴、顶点坐标等)是解决问题的关键.变式训练:见《学练优》本课时练习“课后巩固提升” 第4题【类型三】 二次函数y=ax2+c的图象与三角形的综合
练习:现在你能解答课本85页的习题3.1第6题吗?有一个班的同学去划船,他们算了一下,如果增加一条船,正好每条船坐6人,如果送还了一条船 ,正好每条船坐9人,问这个班共多少同学?小结提问:1、今天你又学会了解方程的哪些方法?有哪些步聚?每一步的依据是什么?2、现在你能回答前面提到的古老的代数书中的“对消”与“还原”是什么意思吗?3、今天讨论的问题中的相等关系又有何共同特点?学生思考后回答、整理:① 解方程的步骤及依据分别是:移项(等式的性质1)合并(分配律)系数化为1(等式的性质2)表示同一量的两个不同式子相等作业:1、 必做题:课本习题2、 选做题:将一块长、宽、高分别为4厘米、2厘米、3厘米的长方体橡皮泥捏成一个底面半径为2厘米的圆柱,它的高是多少?(精确到0.1厘米)
【学习目标】1 、学习过程与方法:因式分解法是把一个一元二次方程化为两个一元一次方程来解,体现了一种“降次”思想、“转化”思想,并了解这种转化思想在解方程中的应用。2、学习重点 :用因式分解法解某些方程。 【温故】1、(1)将一个多项式(特别是二次三项式)因式分解,有哪几种分解方法?(2)将下列多项式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自学课本 P46----P48[讨论]以上解方程的方法是如何使二次方程降为一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
四.知识梳理谈谈用一元二次方程解决例1实际问题的方法。五、目标检测设计1.如图,宽为50cm的矩形图案由10个全等的小长方形拼成,则每个小长方形的面积为( ).【设计意图】发现几何图形中隐蔽的相等关系.2.镇江)学校为了美化校园环境,在一块长40米、宽20米的长方形空地上计划新建一块长9米、宽7米的长方形花圃.(1)若请你在这块空地上设计一个长方形花圃,使它的面积比学校计划新建的长方形花圃的面积多1平方米,请你给出你认为合适的三种不同的方案.(2)在学校计划新建的长方形花圃周长不变的情况下,长方形花圃的面积能否增加2平方米?如果能,请求出长方形花圃的长和宽;如果不能,请说明理由.【设计意图】考查学生的审题能力及用一元二次方程模型解决简单的图形面积问题.
5.一件上衣原价每件500元,第一次降价后,销售甚慢,第二次大幅度降价的百分率是第一次的2 倍,结果以每件240元的价格迅速出售,求每次降价的百分率是多少?6.水果店花1500元进了一批水果,按50%的利润定价,无人购买.决定打折出售,但仍无人购买,结果又一次打折后才售完.经结算,这批水果共盈利500元.若两次打折相同,每次打了几折?(精确到0.1折)7.某服装厂为学校艺术团生产一批演出服,总成本3000元,售价每套30元.有24名家庭贫困学生免费供应.经核算,这24套演出服的成本正好是原定生产这批演出服的利润.这批演出服共生产了多少套?8、某商店经营T恤衫,已知成批购进时单价是2.5元。根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售200件。请你帮助分析,销售单价是多少时 ,可以获利9100元?
解析:(1)已知抛物线解析式y=ax2+bx+0.9,选定抛物线上两点E(1,1.4),B(6,0.9),把坐标代入解析式即可得出a、b的值,继而得出抛物线解析式;(2)求出y=1.575时,对应的x的两个值,从而可确定t的取值范围.解:(1)由题意得点E的坐标为(1,1.4),点B的坐标为(6,0.9),代入y=ax2+bx+0.9,得a+b+0.9=1.4,36a+6b+0.9=0.9,解得a=-0.1,b=0.6.故所求的抛物线的解析式为y=-0.1x2+0.6x+0.9;(2)157.5cm=1.575m,当y=1.575时,-0.1x2+0.6x+0.9=1.575,解得x1=32,x2=92,则t的取值范围为32<t<92.方法总结:解答本题的关键是注意审题,将实际问题转化为求函数问题,培养自己利用数学知识解答实际问题的能力.三、板书设计二次函数y=ax2+bx+c的图象与性质1.二次函数y=ax2+bx+c的图象与性质2.二次函数y=ax2+bx+c的应用
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。