一、组织目的:1.在形成新集体时,同学之间难以融合,唯我独尊的现象严重,且同学之间还存在互不服气,相互排斥的不友好现象。针对此现象,按照校政教处的要求,组织以“我和我的集体”为中心的主题班会——《我们携手走向明天》,旨在增强集体凝聚力,唤起学生对集体的热爱、对同学的友爱之情。2.力争通过此次班会,调动尽可能多的同学参与到建设一个积极向上、团结协作的集体中来。并在班会中发现同学们的特长,增进彼此的了解,促进友谊的发展。 二、准备步骤:1.召开班委会,讲明以上目的。调动班委的积极性,出谋划策,着手准备。 2.主要负责人班长、宣委构思班会内容,注意从本班现实中搜集素材。3.找班内有号召力的同学谈心,激发其参与活动的热情,并引导其在某些方面作表态。4.审查班长、宣委的组织稿件。5.审查有关人员的发言稿, 引导其从积极、正面的角度调动同学们爱集体、尊重他人的热情。
二、教学背景如今的孩子很多都是独生子女,一家人围着,疼都疼不过来,在一些孩子的心中认为父母等对自己的关心、养育都是理所当然的,大多“以自我为中心”,忘记对父母的付出说一声:“谢谢”。孩子对父母的养育变的冷漠,在家任性、霸道。人需要有一颗感恩的心,互相理解,世界才会充满爱。针对当前孩子存在这方面问题,需要加强对学生进行亲情教育。三、教学目标1、通过这次活动启迪学生去体会父母对自己的付出,更重要的是引导学生学会做人做事。2、联系实际,理解学会感恩能从多方面利于青少年成长,形成良好的道德品质。3、学会有一颗感恩的心,对于别人对自己的付出,懂得体会,感谢,学会与他人交往,为他们将来走向社会打下基础。四、教学重点1、唤起学生的感恩情感2、做一些可及的感恩行为,学会理解父母,树立健康心理
“正好啊,老树根是最适合坐下来休息的。来啊!孩子,坐下,快坐下来休息一下。”男孩坐了下来。树好快乐。她高兴得留下了流下了泪水……(故事结束后,课件出示父母辛苦劳作的图片,出示一组家庭生活图片,学生思考感悟。)请学生谈由图片和歌曲获得的感受和体会:“你想到了什么”?学生自由发言。甲:这就是我们的父母,他们无怨无悔,不求回报,真是可怜“天下父母心”啊!播放歌曲《天下父母心》:然而在日常生活中,我们总会与父母发生分歧甚至冲突顶撞,还常常埋怨父母的啰嗦。我们的母亲因为儿子的顽皮而无奈的哭泣;我们的父亲因为女儿的懒惰而叹气;请看小品:《丁丁在家里》(由部分学生和家长代表合演,主要凸显月休孩子在家不听父母教导,过于沉迷网络游戏,不写作业,不能按时作息而家长无可奈何的现象)。
⑦使用手机会妨碍学校的教育教学秩序。上课时有的同学手机未关机,突然来电话,影响全体同学听课。会给整个教室带来不愉快的情绪。⑧手机对人有辐射。许多广告只说手机有多少多少先进功能,却从未提对人体伤害。对人体是否造成不利的影响,医学界可谓众说纷纭,最近权威医学杂志《柳叶刀》的手机报告显示,使用手机造成记忆力受损、睡眠紊乱、头痛、癞痫及血压上升的现象,而儿童,青少年受影响的可能更大。大部分国家通用的手机系统GSM频率为900和1800MHz,其振动的电子过程有机会对人体健康造成影响,主要是对脑部及精神状态的影响. 而且手机振动所散发出的电磁波可能会导致青少年大脑的神经出现病变。青少年正处在生长发育的黄金阶段,如果因为手机而对身体伤害,岂不追悔莫及。
B、郑智化坐在轮椅上演唱自己作词作曲的歌《水手》。[多媒体播放郑智化唱《水手》一歌画面和音乐]①郑智化一上场为什么马上会赢得掌声?《水手》这首歌反映了郑智化怎样的思想境界?(引导学生谈郑智化的人生经历)由于郑智化的努力,“风雨中这点痛算什么”,经过思考斗争,使得悲观消极的情绪转化为奋斗有为、争取上进的积极情绪和心态。3、举出名人对待挫折的事例。(学生事先搜集,这里讲述梗概)司马迁在屈辱中完成了《史记》 屈原在流放期间写出《离骚》 曹雪芹在穷困潦倒中写出巨著《红楼梦》吴敬梓在贫困的寒夜写出了《儒林外史》……4、学生结合录相和故事,谈谈应该怎样正视挫折。[多媒体显示:怎样正视挫折]①要明白挫折是任何人都避免不了的,具有普遍、客观性。面对挫折时,要通过坚强的意志战胜自己的消沉和软弱,通过自己的努力,最终坚定地走向成功。[多媒体显示:挫折不可避免,通过坚强意志战胜]
(2)如何开展岸上急救 第一步:当溺水者被救上岸后,应立即将其口腔打开,清除口腔中的分泌物及其他异物。如果溺水者牙关紧闭,要从其后面用两手的拇指由后向前顶住他的下颌关节,并用力向前推进。同时,两手的食指与中指向下扳颌骨,即可搬开他的牙关。 第二步:控水。救护者一腿跪地,另一腿屈膝,将溺水者的腹部放到屈膝的大腿上,一手扶住他的头部,使他的嘴向下,另一手压他的背部,这样即可将其腹内水排出。 第三步:如果溺水者昏迷,呼吸微弱或停止,要立即进行人工呼吸,通常采用口对口吹气的方法效果较好。若心跳停止还应立即配合胸部按压,进行心脏复苏。心肺复苏的目的在于尽快挽救脑细胞,避免因缺氧引起细胞坏死。因此施救越快越好,同时注意要在急救的同时,要迅速打急救电话,或拦车送医院。
学生欣赏。教师补充讲解。谈谈你有什么感受。同学们,你们勤劳的双手除了做自己的事以外,还为别人做过事吗?师:同学们,你们的小手可真能干 ,会做这么多事情,我们来夸夸自己吧。(学生(齐):嘿嘿,我很棒!)师:我们不但自己的事情自己做,而且还能够别人的事情帮着做。我们的双手会干这么多事情,我真为你们感到高兴。那你们想一想,要是遇到我们不会干的事情,我们又该怎么做呢?学生交流。师:我们不会干的事情一定要学着去做。5、欣赏歌曲《我有一双勤劳的手》6、倡议正如歌曲里的“我有一双勤劳的手,样样事情都会做”下面,周老师提出7条倡议。师:全体起立,请我们班的全体同学从今天开始都能做到:(出示)跟老师一起读。
教学目的:让学生尽快进行自我调整,明确奋斗目标,进入最佳的学习状态。教学内容:重温规章制度,拟定新学期打算。教学时间:一课时教学过程:一、常规教育1、重温《小学生守则》和《小学生日常行为规范》,并在日常学习的过程中让学生知道什么行为是对的,什么是不对的,使学生养成良好的学习和生活习惯。2、作息时间的安排:早上清洁时间、早读时间、午自习时间、放学时间、作业时间,并严格按照科学的作息时间(强调必须遵守)。3、集体活动:要遵守学校的规章制度。4、早读:书本教材、按学习进度读书、背诵。5、课前准备:按课程表准备下节课的学习用品、相关书籍齐全。6、上课听讲:坐姿端正、积极思考、发言大胆、不影响他人学习。7、下课活动:注意安全、团结友爱互帮互助、上下楼梯不拥挤,课间不得在过道、走廊上追逐打闹、高声喧哗,不玩危险游戏,不疯赶打闹,不爬栏杆、云梯,做有意义的课间活动。
三.活动过程: 引言:达.芬奇曾经说过:劳动一日可得一天的安眠,劳动一世可得幸福的长眠。 的确,只有亲自参加劳动的人,才能尊重劳动人民,才会懂得珍惜别人的劳动成果,才会懂得幸福的生活要靠劳动来创造。劳动是我们中华民族的传统美德。我们二十一世纪的中学生就更应该热爱公益劳动,珍惜劳动成果。那么,我们应该怎样热爱公益劳动,珍惜劳动成果呢?“五一”是国际劳动节,那让我们为这个全世界劳动人民的节日唱出劳动的赞歌吧。
练习:现在你能解答课本85页的习题3.1第6题吗?有一个班的同学去划船,他们算了一下,如果增加一条船,正好每条船坐6人,如果送还了一条船 ,正好每条船坐9人,问这个班共多少同学?小结提问:1、今天你又学会了解方程的哪些方法?有哪些步聚?每一步的依据是什么?2、现在你能回答前面提到的古老的代数书中的“对消”与“还原”是什么意思吗?3、今天讨论的问题中的相等关系又有何共同特点?学生思考后回答、整理:① 解方程的步骤及依据分别是:移项(等式的性质1)合并(分配律)系数化为1(等式的性质2)表示同一量的两个不同式子相等作业:1、 必做题:课本习题2、 选做题:将一块长、宽、高分别为4厘米、2厘米、3厘米的长方体橡皮泥捏成一个底面半径为2厘米的圆柱,它的高是多少?(精确到0.1厘米)
解析:先利用正比例函数解析式确定A点坐标,然后观察函数图象得到,当1<x<2时,直线y=2x都在直线y=kx+b的上方,于是可得到不等式0<kx+b<2x的解集.把A(x,2)代入y=2x得2x=2,解得x=1,则A点坐标为(1,2),∴当x>1时,2x>kx+b.∵函数y=kx+b(k≠0)的图象经过点B(2,0),即不等式0<kx+b<2x的解集为1<x<2.故选C.方法总结:本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在y轴上(或下)方部分所有的点的横坐标所构成的集合.三、板书设计1.通过函数图象确定一元一次不等式的解集2.一元一次不等式与一次函数的关系本课时主要是掌握运用一次函数的图象解一元一次不等式,在教学过程中采用讲练结合的方法,让学生充分参与到教学活动中,主动、自主的学习.
【学习目标】1 、学习过程与方法:因式分解法是把一个一元二次方程化为两个一元一次方程来解,体现了一种“降次”思想、“转化”思想,并了解这种转化思想在解方程中的应用。2、学习重点 :用因式分解法解某些方程。 【温故】1、(1)将一个多项式(特别是二次三项式)因式分解,有哪几种分解方法?(2)将下列多项式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自学课本 P46----P48[讨论]以上解方程的方法是如何使二次方程降为一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
活动目的:(1)通过小组讨论活动,让学生理解坐标系的特点,并能应用特点解决问题。(2)培养学生逆向思维的习惯。(3)在小组讨论中培养学生勇于探索,团结协作的精神。第四环节:练习随堂练习 (体现建立直角坐标系的多样性)(补充)某地为了发展城市群,在现有的四个中小城市A,B,C,D附近新建机场E,试建立适当的直角坐标系,并写出各点的坐标。第五环节:小结内容:小结本节课自己的收获和进步,从知识和能力上两个方面总结,老师予于肯定和鼓励。目的:鼓励学生大胆发言,敢于表达自己的观点,同时学生之间可以相互学习,共同提高,老师给予肯定和鼓励,激发学生的学习热情。第六环节:布置作业A类:课本习题5.5。B类:完成A类同时,补充:(1)已知点A到x轴、y轴的距离均为4,求A点坐标;(2)已知x轴上一点A(3,0),B(3,b),且AB=5,求b的值。
提示:要学会在图表中用含未知数的代数式表示出要分析的量;然后利用相等关系列方程。2.Flash动画,情景再现.3.学法小结:(1)对较复杂的问题可以通过列表格的方法理清题中的未知量、已知量以及等量关系,这样,条理比较清楚.(2)借助方程组解决实际问题.设计意图:生动的情景引入,意在激发学生的学习兴趣;利用图表帮助分析使条理清楚,降低思维难度,并使列方程解决问题的过程更加清晰;学法小结,着重强调分析方法,养成归纳小结的良好习惯。实际效果:动画引入,使数字问题变的更有趣,确实有效地激发了学生的兴趣,学生参与热情很高;借助图表分析,有效地克服了难点,学生基本都能借助图表分析,在老师的引导下列出方程组。4.变式训练师生共同研究下题:有一个三位数,现将最左边的数字移到最右边,则比原来的数小45;又知百位数字的9倍比由十位数字和个位数字组成的两位数小3,试求原来的3位数.
故直线l2对应的函数关系式为y=52x.故(-2,-5)可看成是二元一次方程组5x-2y=0,2x-y=1的解.(3)在平面直角坐标系内画出直线l1,l2的图象如图,可知点A(0,-1),故S△APO=12×1×2=1.方法总结:此题在待定系数法的应用上有所创新,并且把一次函数的图象和三角形面积巧妙地结合起来,既考查了基本知识,又不局限于基本知识.三、板书设计利用二元一次方程组确定一次函数表达式的一般步骤:1.用含字母的系数设出一次函数的表达式:y=kx+b(k≠0);2.将已知条件代入上述表达式中得k,b的二元一次方程组;3.解这个二元一次方程组得k,b的值,进而得到一次函数的表达式.通过教学,进一步理解方程与函数的联系,体会知识之间的普遍联系和知识之间的相互转化.通过对本节课的探究,培养学生的观察能力、识图能力以及语言表达能力.
四.知识梳理谈谈用一元二次方程解决例1实际问题的方法。五、目标检测设计1.如图,宽为50cm的矩形图案由10个全等的小长方形拼成,则每个小长方形的面积为( ).【设计意图】发现几何图形中隐蔽的相等关系.2.镇江)学校为了美化校园环境,在一块长40米、宽20米的长方形空地上计划新建一块长9米、宽7米的长方形花圃.(1)若请你在这块空地上设计一个长方形花圃,使它的面积比学校计划新建的长方形花圃的面积多1平方米,请你给出你认为合适的三种不同的方案.(2)在学校计划新建的长方形花圃周长不变的情况下,长方形花圃的面积能否增加2平方米?如果能,请求出长方形花圃的长和宽;如果不能,请说明理由.【设计意图】考查学生的审题能力及用一元二次方程模型解决简单的图形面积问题.
解析:(1)根据题设条件,求出等量关系,列一元一次方程即可求解;(2)根据题设中的不等关系列出相应的不等式,通过求解不等式确定最值,求最值时要注意自变量的取值范围.解:设购进A种树苗x棵,则购进B种树苗(17-x)棵,(1)根据题意得80x+60(17-x)=1220,解得x=10,所以17-x=17-10=7,答:购进A种树苗10棵,B种树苗7棵;(2)由题意得17-x172,所需费用为80x+60(17-x)=20x+1020(元),费用最省需x取最小整数9,此时17-x=17-9=8,此时所需费用为20×9+1020=1200(元).答:购买9棵A种树苗,8棵B种树苗的费用最省,此方案所需费用1200元.三、板书设计一元一次不等式与一次函数关系的实际应用分类讨论思想、数形结合思想本课时结合生活中的实例组织学生进行探索,在探索的过程中渗透分类讨论的思想方法,培养学生分析、解决问题的能力,从新课到练习都充分调动了学生的思考能力,为后面的学习打下基础.
探究点二:用配方法解二次项系数为1的一元二次方程用配方法解方程:x2+2x-1=0.解析:方程左边不是一个完全平方式,需将左边配方.解:移项,得x2+2x=1.配方,得x2+2x+(22)2=1+(22)2,即(x+1)2=2.开平方,得x+1=±2.解得x1=2-1,x2=-2-1.方法总结:用配方法解一元二次方程时,应按照步骤严格进行,以免出错.配方添加时,记住方程左右两边同时加上一次项系数一半的平方.三、板书设计用配方法解简单的一元二次方程:1.直接开平方法:形如(x+m)2=n(n≥0)用直接开平方法解.2.用配方法解一元二次方程的基本思路是将方程转化为(x+m)2=n(n≥0)的形式,再用直接开平方法,便可求出它的根.3.用配方法解二次项系数为1的一元二次方程的一般步骤:(1)移项,把方程的常数项移到方程的右边,使方程的左边只含二次项和一次项;(2)配方,方程两边都加上一次项系数一半的平方,把原方程化为(x+m)2=n(n≥0)的形式;(3)用直接开平方法求出它的解.
探究点二:选用适当的方法解一元二次方程用适当的方法解方程:(1)3x(x+5)=5(x+5);(2)3x2=4x+1;(3)5x2=4x-1.解:(1)原方程可变形为3x(x+5)-5(x+5)=0,即(x+5)(3x-5)=0,∴x+5=0或3x-5=0,∴x1=-5,x2=53;(2)将方程化为一般形式,得3x2-4x-1=0.这里a=3,b=-4,c=-1,∴b2-4ac=(-4)2-4×3×(-1)=28>0,∴x=4±282×3=4±276=2±73,∴x1=2+73,x2=2-73;(3)将方程化为一般形式,得5x2-4x+1=0.这里a=5,b=-4,c=1,∴b2-4ac=(-4)2-4×5×1=-4<0,∴原方程没有实数根.方法总结:解一元二次方程时,若没有具体的要求,应尽量选择最简便的方法去解,能用因式分解法或直接开平方法的选用因式分解法或直接开平方法;若不能用上述方法,可用公式法求解.在用公式法时,要先计算b2-4ac的值,若b2-4ac<0,则判断原方程没有实数根.没有特殊要求时,一般不用配方法.
解析:(1)已知抛物线解析式y=ax2+bx+0.9,选定抛物线上两点E(1,1.4),B(6,0.9),把坐标代入解析式即可得出a、b的值,继而得出抛物线解析式;(2)求出y=1.575时,对应的x的两个值,从而可确定t的取值范围.解:(1)由题意得点E的坐标为(1,1.4),点B的坐标为(6,0.9),代入y=ax2+bx+0.9,得a+b+0.9=1.4,36a+6b+0.9=0.9,解得a=-0.1,b=0.6.故所求的抛物线的解析式为y=-0.1x2+0.6x+0.9;(2)157.5cm=1.575m,当y=1.575时,-0.1x2+0.6x+0.9=1.575,解得x1=32,x2=92,则t的取值范围为32<t<92.方法总结:解答本题的关键是注意审题,将实际问题转化为求函数问题,培养自己利用数学知识解答实际问题的能力.三、板书设计二次函数y=ax2+bx+c的图象与性质1.二次函数y=ax2+bx+c的图象与性质2.二次函数y=ax2+bx+c的应用
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。