【教学步骤】一、作者及作品:亨利·梭罗(1817-18620,美国作家,诗人,自然主义者,改革家和哲学家。1817年出生于康科德城,十六岁即进入美国著名学府哈佛大学就学。次年,大思想家爱默生到哈佛大学作了题为《美国学者》的演讲,宣扬先知先觉的智慧,而正是这一次演讲,给了梭罗以深刻的影响,改变了他的人生。梭罗从哈佛大学毕业后,本来前程似锦,但他避开闹市,住到爱默生家中。在担任数年中学校长后,毅然决定以作诗和论述自然为终生事业。梭罗受超经验主义领袖爱默生影响很深。1845年,28岁的梭罗撇开金钱的羁绊,在爱默生的林地中的瓦尔登湖畔自建一个小木屋,自耕自食两年有余。专业从事写作。本书即是他对两年林中生活所见所思所悟的记录。十年后,《瓦尔登湖》出版,但它不仅未能引起人们的重视,相反还遭到批评和讥讽。然而,随着时光的流逝,这本书的影响却越来越大,终而成为美国文学中的一本独特的、卓越的名著。
2、培养幼儿用语言讲述操作结果的习惯。活动准备: 图形拼图一幅,标记卡、数字卡若干,各种图形若干,数字印章,印泥、操作用纸若干。
2.训练思维的正确性、敏捷性。活动准备: 几何图形片10张、红黄蓝三色的几何图形板长方形、三角形、半圆形(上有红黑绿三种颜色写的1"10的数字各一个)、数字牌每人一块。活动过程: 师生进入数学宫 游戏一:做的对有快(复习10以内数的形成、数数)1. 目测几何图形的个数做动作
4、今天学了22课后,你一定会体会到喝水也是那么幸福的!5、板书课题。谁来读课题?这些字大家都认识了,那这个字怎么读?学习“忘”。“忘”怎么记?你想怎么读这个词才能让大家不忘!(大声)“挖”和“井”怎么记?“挖”用手挖所以是提手旁,挖的是洞,所以是穴字头,挖成“乙”的形状。“井”(板画一口井)谁能上来给我们介绍一下井的构造读了课题我们就能知道这么多,就带着体会再来齐读课题吧,一定会读出不一样的感觉来。
2. 理解词:眉开眼笑、调皮。3. 在欣赏、分析过程中感受故事的幽默、诙谐。重点:要求理解鼠妈妈教鼠宝宝学外语的原因。难点:鼠宝宝从不愿学的动态表现到肯学的思想转变过程。环境创设、材料准备:图片设计思路:这个故事生动有趣,诙谐幽默,能激起幼儿的学习兴趣。一开始以照片的形式出现,吸引了幼儿的注意力,让幼儿加深了对鼠宝宝一家的喜爱之情。接着一系列的提问,例:“第二个生的叫什么?”发展了幼儿 <BR><P></P>的想象力和发展性思维能力,接着引导幼儿进入下一环节,当故事将到一半时停止讲述,给幼儿留下了遐想的空间,让幼儿运用已有的知识经验来理解“外语”一词,通过悬念式的提问,激发幼儿的好奇性心和学习欲望。听完故事,通过感受故事中有趣的词句,对幼儿的倾听能力提出了要求。接着教师的提问“为什么鼠宝宝一开始不愿学外语,可后来却抢着说‘学外语真好呢’”?这个问题具有较强的开发性,幼儿可以从多个角度来回答,充分发展了幼儿的思维。同时,很自然地渗透了品德教育,避免了空洞的说教。
2,通过讨论知道有些文具是一年级小学生必备的,而有些文具是今后才会用到的。 3,能大胆的发表自己的见解。活动准备:用幼儿和老师共同收集的文具布置“小小文具超市”。 幼儿每人一份钱。(钱的数目从5~10)、每组一个塑料框计算用的纸和笔。 有关“文具”的文字卡片若干。
活动目的:(1)通过小组讨论活动,让学生理解坐标系的特点,并能应用特点解决问题。(2)培养学生逆向思维的习惯。(3)在小组讨论中培养学生勇于探索,团结协作的精神。第四环节:练习随堂练习 (体现建立直角坐标系的多样性)(补充)某地为了发展城市群,在现有的四个中小城市A,B,C,D附近新建机场E,试建立适当的直角坐标系,并写出各点的坐标。第五环节:小结内容:小结本节课自己的收获和进步,从知识和能力上两个方面总结,老师予于肯定和鼓励。目的:鼓励学生大胆发言,敢于表达自己的观点,同时学生之间可以相互学习,共同提高,老师给予肯定和鼓励,激发学生的学习热情。第六环节:布置作业A类:课本习题5.5。B类:完成A类同时,补充:(1)已知点A到x轴、y轴的距离均为4,求A点坐标;(2)已知x轴上一点A(3,0),B(3,b),且AB=5,求b的值。
探究点二:用配方法解二次项系数为1的一元二次方程用配方法解方程:x2+2x-1=0.解析:方程左边不是一个完全平方式,需将左边配方.解:移项,得x2+2x=1.配方,得x2+2x+(22)2=1+(22)2,即(x+1)2=2.开平方,得x+1=±2.解得x1=2-1,x2=-2-1.方法总结:用配方法解一元二次方程时,应按照步骤严格进行,以免出错.配方添加时,记住方程左右两边同时加上一次项系数一半的平方.三、板书设计用配方法解简单的一元二次方程:1.直接开平方法:形如(x+m)2=n(n≥0)用直接开平方法解.2.用配方法解一元二次方程的基本思路是将方程转化为(x+m)2=n(n≥0)的形式,再用直接开平方法,便可求出它的根.3.用配方法解二次项系数为1的一元二次方程的一般步骤:(1)移项,把方程的常数项移到方程的右边,使方程的左边只含二次项和一次项;(2)配方,方程两边都加上一次项系数一半的平方,把原方程化为(x+m)2=n(n≥0)的形式;(3)用直接开平方法求出它的解.
(1) 你能解哪些特殊的一元二次方程?(2) 你会解下列一元二次方程吗?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0吗?你遇到的困难是什么?你能设法将这个方程转化成上面方程的形式吗?与同伴进行交流。活动二:做一做:填上适当的数,使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左边,常数项和一次项有什么关系解一元二次方程的思路是什么?活动三:例1、解方程:x2+8x-9=0你能用语言总结配方法吗?课本37页随堂练习课时作业:
二、合作交流活动一:(1) 你能解哪些特殊的一元二次方程?(2) 你会解下列一元二次方程吗?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0吗?你遇到的困难是什么?你能设法将这个方程转化成上面方程的形式吗?与同伴进行交流。活动二:做一做:填上适当的数,使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左边,常数项和一次项有什么关系解一元二次方程的思路是什么?活动三:例1、解方程:x2+8x-9=0你能用语言总结配方法吗?课本37页随堂练习课时作业:
1、教学对象,九年级学生,实践课 2、近几年随着体育加试的进行,尤其是今年又把跳绳例如体育加试项目。九年级学生,通过前段时间的学习,体能普遍较好,对跳绳有关的练习方式都有较强的兴趣。 跳绳方面,基本的正摇跳,长绳的双人摇跳、多人摇跳等技术动作有较好的基础。大部分学生具备了向较高一层次难度发展的条件。比如:正摇跳,长绳的双人摇跳、多人摇跳多跳等,这些技术动作学生都有较浓的兴趣。 3、另外中考体育加试的需要,学生学习跳绳的热情、组织纪律、认识能力、身体素质相对其他年级有一定的优势。因此,我根据学生的实际情况,安排本节课的内容,让学生能更好的接受本次课的教学。另一方面,九年级学生正处自身发育的高峰期,灵敏,协调素质的快速增长有可性强的特点,跳绳恰好有此方面的锻炼价值,这更增加提高了学生对跳绳的热爱。同时也使我国民间体育得到更好的发展。
活动准备: 1、鸡蛋壳、饼干、杯子、醋、镜子 2、课前两天和幼儿一起将鸡蛋壳浸在醋里; 3、产生龋齿的过程图片和牙防五步曲的图片 4、牙模型、牙刷各一、动画片《聪聪王子牙防历险记》活动过程: 一、律动进场,引出情景表演; 牙宝宝在哭,原来是他的小主人喜欢吃甜食,又不刷牙,时间长了,细菌在牙宝宝的身上钻了几个洞洞。
活动过程1、幼儿根据已有经验谈谈阳台的主要功能。"小朋友家里是不是都有阳台?你们都在阳台上做些什么?"小结:阳台是一个伸向屋外的平台,它可以接触到更多的空气和阳光。有的人家在阳台上晒衣服,养花,养鱼,有的人在阳台上活动身体,锻炼。夏天,还可在阳台上乘凉。大家都需要它。2、观看录像,讨论在阳台上哪些行为是对的,哪些是错误的。片段一:小朋友在阳台上看书、折纸。片段二:小朋友在阳台上锻炼身体。片段三:一幼儿将头和身体伸向阳台外喊楼下的小朋友。片段四:一幼儿往阳台外抛东西。片段五:一幼儿将身体伸向阳台外拿手帕。片段六:一小朋友在阳台上玩,忽然风将阳台门吹上了,怎么办?教师引导幼儿分段观看录像片,每看完一段,建议提问:这位小朋友的行为哪里对,哪里错,为什么?应该怎样做?
活动准备: 背景图(马路)、斑马图片、斑马线 活动过程: 一、故事导入 1、讲述故事“有一群快乐的…………主动放慢了速度”。 1)今天有小动物到我们班级来,他们要给我们说个好听的故事。故事的名字是《马路上的斑马线》。 2)小动物们是怎么过马路的?(坐在斑马叔叔的背上,让斑马叔叔驮着过马路) 3)可是斑马叔叔每天这么背小动物过马路,他多累啊,你们有没有好办法?(幼儿想办法) 4)你们想了很多好办法,小动物们也想到好办法了,让我们来听听他们的办法。 2、讲述故事“聪明的小猴子想出了一个好办法……就一点也不害怕了”。
教学目标:1、在仔细观察常用文具的基础上,启发学生设计造型新颖、色彩鲜艳的各种常用文具。2、引导学生运用橡皮泥表现各种文具的形象,提高学生立体表现能力。教学重点:打开学生积极、丰富的创造性思维,引发对文具造型的兴趣。
二、使用对象及场所:大班幼儿在幼儿院进行。三、活动目标1、在观察、比较、讨论中,对线进行颜色、粗细、质地、长短的分类。2、教师和标记的引导下,学习自己设计简单的统计表。3、语言表达操作的情况,使幼儿的语言和思维同步得到发展。四、活动准备1、各种各样的线若干。2、纸、笔每人一份。3、统计示范图。
1、谈话导入,激发兴趣。 师:小朋友,每个人都有自己的兴趣爱好,老师也有自己的兴趣和爱好,你能猜猜是什么爱好吗? 生:自由发言 师:我想小朋友也都有自己的兴趣爱好,谁愿意告诉大家呢? 生:幼儿各自说出自己的兴趣爱好。 2、师幼相互分享自己的兴趣爱好。A幼儿展示自己的兴趣爱好。 B教师展示兴趣爱好。 3、闯关 闯关游戏一:我是小小主持人
【教学目标】知识目标:(1)掌握利用计算器求角度的方法;(2)了解已知三角函数值,求指定范围内的角的方法.能力目标:(1)会利用计算器求角;(2)已知三角函数值会求指定范围内的角;(3)培养使用计算工具的技能.【教学重点】已知三角函数值,利用计算器求角;利用诱导公式求出指定范围内的角.【教学难点】已知三角函数值,利用计算器求指定范围内的角.【教学设计】(1)精讲已知正弦值求角作为学习突破口;(2)将余弦、正切的情况作类比让学生小组讨论,独立认知学习;(3)在练习——讨论中深化、巩固知识,培养能力;(4)在反思交流中,总结知识,品味学习方法.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】 教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 5.7已知三角函数值求角 *构建问题探寻解决 问题 已知一个角,利用计算器可以求出它的三角函数值, 利用计算器,求= (精确到0.0001): 反过来,已知一个角的三角函数值,如何求出相应的角? 解决 准备计算器.观察计算器上的按键并阅读相关的使用说明书.小组内总结学习已知三角函数值,利用计算器求出相应的角的方法. 利用计算器求出x:,则x= 归纳 计算器的标准设定中,已知正弦函数值,只能显示出?90°~ 90°(或)之间的角. 介绍 质疑 提问 引导 说明 了解 思考 动手 操作 探究 利用 问题 引起 学生 的好 奇心 并激 发其 独立 寻求 计算 器操 作的 欲望 10
活动目标:通过实践活动,学会用自己的方法分类统计生活中物品的数量,从中体验数学的有趣及重要。活动准备:教师事先选择好实践的场地(幼儿园内),并亲自实践一遍做好记录,心中有数;纸、笔。活动过程:(一)复习巩固:1、你能从1数到几?数数看。2、更快的数数方法:5个5个地数,10个10个地数。3、100以内的随便一个数你会写吗?试试看(请几个幼儿到黑板上听写)。(注:此环节的目的在于教师了解幼儿在实践活动中必备的一些相关知识掌握如何,以便在活动中更好地把握。)(二)联 系生活:1、在生活中,你碰到什么东西要用数来数?举例子。2、在幼儿园里也藏了许多数,请小朋友们说说。3、用什么方法统计方便?(每5个或10个记录一次,然后5个5个或10个10个地数;列表统计等)
解析:(1)由切线的性质得AB⊥BF,因为CD⊥AB,所以CD∥BF,由平行线的性质得∠ADC=∠F,由圆周角定理的推论得∠ABC=∠ADC,于是证得∠ABC=∠F;(2)连接BD.由直径所对的圆周角是直角得∠ADB=90°,因为∠ABF=90°,然后运用解直角三角形解答.(1)证明:∵BF为⊙O的切线,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半径为203.方法总结:运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.