学生回答:推动社会发展的矛盾是:生产力和生产关系的矛盾,经济基础和上层建筑的矛盾。问题:你知道人类社会存在和发展的基础吗?学生回答,步步深入。社会发展的规律是生产关系一定要适合生产力发展的规律,上层建筑一定要适合经济基础状况的规律。你是如何理解这两个规律的?请举例说明。那么你是如何理解这一规律的,请举例说明学生阅读教材第二目,并举例说明。培养学生自我学习能力。教师归纳:总结生产力和生产关系、经济基础和上层建筑的辩证关系原理。过渡:我们掌握了社会发展的规律,那么同学们来说一下,社会发展呈什么趋势?这一趋势怎么实现的?社会矛盾的解决方式有几种,为什么会有这么的区别,我们国家的矛盾解决靠什么方式来完成?学生阅读教材第三目,学生分组合作探究,交流发言。设计意图:提升推导能力,引导深化认识。教师归纳总结:社会历史发展的总趋势是前进的、上升的,发展的过程是曲折的。
(一)教材的地位与作用“地球的运动”是地理环境的形成以及地理环境各要素运动变化的基础,因而也是高中阶段地理学习的基础。“地球公转与季节”是在介绍完“地球运动的一般特点”和“地球自转与时差”之后进行的;(二)教学目标(1)知识与技能目标:1.掌握全球各纬度昼夜长短和正午太阳高度变化的规律;2.懂得运用地球运动的有关知识解释生活现象和分析实际问题。(2)过程与方法目标:1.通过前后关联知识点层层递进的学习,让学生学会运用相关图表来分析地理问题,并能理论和实际相结合综合分析和解决问题。(加强对图表分析能力的培养,是地理学科的突出特点。)(3)情感、态度与价值观目标:1.使学生初步了解地球上许多地理现象都同地球的运动有关,从而对学生进行唯物主义教育,培养学生热爱科学和勇于探索的精神。
(一)教材的地位与作用本节主要阐述太阳辐射和太阳活动对地球的影响。太阳辐射对地球的影响主要是从太阳为地球提供能量这个方面来阐述,通过图片的形式从四个方面来分析。不应让学生记忆这四个方面,需要归纳为:(1)直接或间接(化石燃料)为地球提供大部分能量。(2)维持四大圈层物质循环和能量交换,决定地理环境的基本特征。(二)教学目标(1)知识与技能目标:1.阐述太阳对地球的影响。太阳对地球的影响,包括太阳辐射对地球的影响和太阳活动对地球的影响。2.太阳辐射的概念、来源、波长等只作一般了解;太阳活动对地球影像是通过作用气候、地球电离层和磁场而发生的,主要包括磁暴、无线电短波通讯被干扰、极光和气候异常等。3.教材涉及太阳活动的概念、标志和周期需要明确,而太阳大气分层及对应太阳活动现象只作一般了解。
◆设计意图:培养学生独立思考、合作学习的能力。分别说明市场、交通、劳动力、机械和政策对农业生产的影响,让学生切实地考虑,拓展学生思路。教师激发和维持学生学习动机、引导学生、帮助学生自主发现、探索知识,达到巩固所学知识,检验学生的实践应用能力。D.分析教材,识别图片,理解农业地域阅读、分析教材,看图识别,研究案例《澳大利亚地混合农业生产》、思考问题、解决问题◆设计意图:图片展示能清楚直观地说明问题,通过案例分析,了解澳大利亚的混合农业生产,培养学生独立思考问题、解决问题的能力,开拓学生思路。3.课堂小结:◆设计意图:帮助学生回顾课堂、巩固所学知识。4.反馈练习:◆设计意图:知识与能力强化训练,巩固本课所学知识,提高应用能力。
客观世界中的各种各样的运动变化现象均可表现为变量间的对应关系,这种关系常常可用函数模型来描述,并且通过研究函数模型就可以把我相应的运动变化规律.课程目标1、能够找出简单实际问题中的函数关系式,初步体会应用一次函数、二次函数、幂函数、分段函数模型解决实际问题; 2、感受运用函数概念建立模型的过程和方法,体会一次函数、二次函数、幂函数、分段函数模型在数学和其他学科中的重要性. 数学学科素养1.数学抽象:总结函数模型; 2.逻辑推理:找出简单实际问题中的函数关系式,根据题干信息写出分段函数; 3.数学运算:结合函数图象或其单调性来求最值. ; 4.数据分析:二次函数通过对称轴和定义域区间求最优问题; 5.数学建模:在具体问题情境中,运用数形结合思想,将自然语言用数学表达式表示出来。 重点:运用一次函数、二次函数、幂函数、分段函数模型的处理实际问题;难点:运用函数思想理解和处理现实生活和社会中的简单问题.
本节通过学习用二分法求方程近似解的的方法,使学生体会函数与方程之间的关系,通过一些函数模型的实例,让学生感受建立函数模型的过程和方法,体会函数在数学和其他学科中的广泛应用,进一步认识到函数是描述客观世界变化规律的基本数学模型,能初步运用函数思想解决一些生活中的简单问题。课程目标1.了解二分法的原理及其适用条件.2.掌握二分法的实施步骤.3.通过用二分法求方程的近似解,使学生体会函数零点与方程根之间的联系,初步形成用函数观点处理问题的意识.数学学科素养1.数学抽象:二分法的概念;2.逻辑推理:用二分法求函数零点近似值的步骤;3.数学运算:求函数零点近似值;4.数学建模:通过一些函数模型的实例,让学生感受建立函数模型的过程和方法,体会函数在数学和其他学科中的广泛应用.
《数学1必修本(A版)》的第五章4.5.2用二分法求方程的近似解.本节课要求学生根据具体的函数图象能够借助计算机或信息技术工具计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法,从中体会函数与方程之间的联系;它既是本册书中的重点内容,又是对函数知识的拓展,既体现了函数在解方程中的重要应用,同时又为高中数学中函数与方程思想、数形结合思想、二分法的算法思想打下了基础,因此决定了它的重要地位.发展学生数学直观、数学抽象、逻辑推理和数学建模的核心素养。课程目标 学科素养1.通过具体实例理解二分法的概念及其使用条件.2.了解二分法是求方程近似解的常用方法,能借助计算器用二分法求方程的近似解.3.会用二分法求一个函数在给定区间内的零点,从而求得方程的近似解. a.数学抽象:二分法的概念;b.逻辑推理:运用二分法求近似解的原理;
函数在高中数学中占有很重要的比重,因而作为函数的第一节内容,主要从三个实例出发,引出函数的概念.从而就函数概念的分析判断函数,求定义域和函数值,再结合三要素判断函数相等.课程目标1.理解函数的定义、函数的定义域、值域及对应法则。2.掌握判定函数和函数相等的方法。3.学会求函数的定义域与函数值。数学学科素养1.数学抽象:通过教材中四个实例总结函数定义;2.逻辑推理:相等函数的判断;3.数学运算:求函数定义域和求函数值;4.数据分析:运用分离常数法和换元法求值域;5.数学建模:通过从实际问题中抽象概括出函数概念的活动,培养学生从“特殊到一般”的分析问题的能力,提高学生的抽象概括能力。重点:函数的概念,函数的三要素。难点:函数概念及符号y=f(x)的理解。
本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.3.2节《对数的运算》。其核心是弄清楚对数的定义,掌握对数的运算性质,理解它的关键就是通过实例使学生认识对数式与指数式的关系,分析得出对数的概念及对数式与指数式的 互化,通过实例推导对数的运算性质。由于它还与后续很多内容,比如对数函数及其性质,这也是高考必考内容之一,所以在本学科有着很重要的地位。解决重点的关键是抓住对数的概念、并让学生掌握对数式与指数式的互化;通过实例推导对数的运算性质,让学生准确地运用对数运算性质进行运算,学会运用换底公式。培养学生数学运算、数学抽象、逻辑推理和数学建模的核心素养。1、理解对数的概念,能进行指数式与对数式的互化;2、了解常用对数与自然对数的意义,理解对数恒等式并能运用于有关对数计算。
对数与指数是相通的,本节在已经学习指数的基础上通过实例总结归纳对数的概念,通过对数的性质和恒等式解决一些与对数有关的问题.课程目标1、理解对数的概念以及对数的基本性质;2、掌握对数式与指数式的相互转化;数学学科素养1.数学抽象:对数的概念;2.逻辑推理:推导对数性质;3.数学运算:用对数的基本性质与对数恒等式求值;4.数学建模:通过与指数式的比较,引出对数定义与性质.重点:对数式与指数式的互化以及对数性质;难点:推导对数性质.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。一、 情景导入已知中国的人口数y和年头x满足关系 中,若知年头数则能算出相应的人口总数。反之,如果问“哪一年的人口数可达到18亿,20亿,30亿......”,该如何解决?要求:让学生自由发言,教师不做判断。而是引导学生进一步观察.研探.
学生已经学习了指数运算性质,有了这些知识作储备,教科书通过利用指数运算性质,推导对数的运算性质,再学习利用对数的运算性质化简求值。课程目标1、通过具体实例引入,推导对数的运算性质;2、熟练掌握对数的运算性质,学会化简,计算.数学学科素养1.数学抽象:对数的运算性质;2.逻辑推理:换底公式的推导;3.数学运算:对数运算性质的应用;4.数学建模:在熟悉的实际情景中,模仿学过的数学建模过程解决问题.重点:对数的运算性质,换底公式,对数恒等式及其应用;难点:正确使用对数的运算性质和换底公式.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。一、 情景导入回顾指数性质:(1)aras=ar+s(a>0,r,s∈Q).(2)(ar)s= (a>0,r,s∈Q).(3)(ab)r= (a>0,b>0,r∈Q).那么对数有哪些性质?如 要求:让学生自由发言,教师不做判断。而是引导学生进一步观察.研探.
本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.5.1节《函数零点与方程的解》,由于学生已经学过一元二次方程与二次函数的关系,本节课的内容就是在此基础上的推广。从而建立一般的函数的零点概念,进一步理解零点判定定理及其应用。培养和发展学生数学直观、数学抽象、逻辑推理和数学建模的核心素养。1、了解函数(结合二次函数)零点的概念;2、理 解函数零点与方程的根以及函数图象与x轴交点的关系,掌握零点存在性定理的运用;3、在认识函数零点的过程中,使学生学会认识事物的特殊性与一般性之间的关系,培养数学数形结合及函数思想; a.数学抽象:函数零点的概念;b.逻辑推理:零点判定定理;c.数学运算:运用零点判定定理确定零点范围;d.直观想象:运用图形判定零点;e.数学建模:运用函数的观点方程的根;
本章通过学习用二分法求方程近似解的的方法,使学生体会函数与方程之间的关系,通过一些函数模型的实例,让学生感受建立函数模型的过程和方法,体会函数在数学和其他学科中的广泛应用,进一步认识到函数是描述客观世界变化规律的基本数学模型,能初步运用函数思想解决一些生活中的简单问题。1.了解函数的零点、方程的根与图象交点三者之间的联系.2.会借助零点存在性定理判断函数的零点所在的大致区间.3.能借助函数单调性及图象判断零点个数.数学学科素养1.数学抽象:函数零点的概念;2.逻辑推理:借助图像判断零点个数;3.数学运算:求函数零点或零点所在区间;4.数学建模:通过由抽象到具体,由具体到一般的思想总结函数零点概念.重点:零点的概念,及零点与方程根的联系;难点:零点的概念的形成.
【教师总结:联合国的会徽的世界地图象征着联合国是一个世界性的国际组织;图案中得橄榄枝象征着和平。联合国采取了很多措施以实现它的宗旨,如对于朝鲜违反国际法规进行核试验,联合国给予警告和制裁,充分体现了它维护国际和平与安全,促进国际合作与发展的宗旨。】对于中国与联合国的关系这部分内容,我将请阅读教材92页几幅图片及材料内容,设置活动探究课中国在联合国的声音和身影,请合作讨论思考以下两个问题,中国与联合国的关系;列举事实说明中国在国际社会中的重要作用。 教师通过剖析中国在联合国的地位和作用,引导学生理解中国在国际社会中发挥着重要作用,是负责任的国家;同时培养学生综合运用知识分析说明问题的能力,使学生感受作为中国人的自豪。【教师总结:中国是联合国的创始国之一,中国作为联合国的创始国和安理会常任理事国之一,一贯遵循联合国宪章的宗旨和原则,积极参与联合国及其专门机构有利于世界和平和发展的活动。】
【这部分的设计目的,要学生明白热带雨林只是一个案例,我们的目的是要合理开发和保护全世界的森林。由森林的开发与保护来明确区域发展过程中产生的环境问题,危害及治理保护措施。】然后知识迁移——东北林区的开发与保护介绍东北地区的森林材料:东北林区是我国最大的天然林区,主要分布于大、小兴安岭及长白山地,在平衡大气成分、净化空气、补给土壤有机质、涵养水源、保持水土、改善地方气候有重要的作用。它还是我国最大的采伐基地,宜林地区广,森林树种丰富。 东北林区开发中的问题及影响点拨:由于人类的严重超采,采育脱节,乱砍滥伐,毁林开荒,再加上森林火灾,东北林区的面积在锐减,带来了严重的生态恶化。我们该如何开发和保护东北地区的森林呢?
例7 用描述法表示抛物线y=x2+1上的点构成的集合.【答案】见解析 【解析】 抛物线y=x2+1上的点构成的集合可表示为:{(x,y)|y=x2+1}.变式1.[变条件,变设问]本题中点的集合若改为“{x|y=x2+1}”,则集合中的元素是什么?【答案】见解析 【解析】集合{x|y=x2+1}的代表元素是x,且x∈R,所以{x|y=x2+1}中的元素是全体实数.变式2.[变条件,变设问]本题中点的集合若改为“{y|y=x2+1}”,则集合中的元素是什么?【答案】见解析 【解析】集合{ y| y=x2+1}的代表元素是y,满足条件y=x2+1的y的取值范围是y≥1,所以{ y| y=x2+1}={ y| y≥1},所以集合中的元素是大于等于1的全体实数.解题技巧(认识集合含义的2个步骤)一看代表元素,是数集还是点集,二看元素满足什么条件即有什么公共特性。
(2) 请你结合上述两幅漫画,对这一行为进行简要评析。15.某校七年级组织学生以“孝亲敬长”为主题开展手抄报评比活动。下面是某 同学手抄报的部分内容,请你阅读并参与完成相关问题。[我的感受]在人世间,最美的旅行是回家。无论走得多远,每个游子的心里也都有一个 归家的梦!回家的感觉真好!(1) 结合所学的知识,分析说明“回家真好”的原因是什么?[我的思考]调查显示:在当今家庭中,许多孩子不要父母过多干涉他们的学习和生活, 很多同龄人有被父母偷看过 QQ、微信聊天记录和日记的经历……(2) 针对调查显示的问题,你认为应怎样做才能处理好亲子之间的冲突?[我的鉴赏]人生最美好的事,莫过于我长大,你未老。我有能力报答,你仍然健康。父 母之爱,儿女即使用一辈子也是报答不完的。
本单元内容是部编版《道德与法治》七年级上册第三单元,单元标题是“师 长情谊”,依据《义务教育道德与法治课程标准 (2022 年版) 》,围绕核心素 养确定的课程目标要求如下:1、道德修养家庭美德,践行以尊老爱幼、男女平等、勤劳节俭、邻里互助为主要内容的 道德要求,做家庭好成员。培育学生的道德修养,有助于他们经历从感性体验到理性认知的过程,传承 中华民族传统美德,形成健全的道德认知和道德情感,发展良好的道德行为。 2、健全人格理性平和,开放包容,理性表达意见,能够换位思考,学会处理与家庭、他 人的关系。3、总目标学生能够了解个人生活和公共生活中基本的道德要求和行为规范,能够在日常生 活中践行尊老爱幼等的道德要求;形成初步的道德认知和判断,能够明辨是非善 恶;通过体验、认知和践行,形成良好的道德品质。具有理性平和的心态,能够 建立良好的师生关系和家庭关系。
(四) 作业分析与设计意图这是一项基于素质教育导向的整体式课时作业设计,以培育学生课程核心素 养为目标,为了培养学生的基本道德修养和社会责任感,养成良好的行为习惯, 作业以劳动活动的方式呈现,特开展“帮助父母做家务”社会实践活动。教师通 过学生活动成果的展示,从“计划合理,联系实际;操作具体,善于思考;记录 完整,汇报详细;总结全面,反思深刻”等 4个维度对作业进行评价,以“优秀” “良好”“合格”三个等级呈现。通过家务实践活动让学生体验到父母工作的辛 苦和劳动的光荣,感谢父母对自己无微不至的关怀和照顾。让学生在接受爱的同 时学会关爱,学会付出、学会回报,懂得孝亲敬长。这种劳动实践的作业设计与 实施,有利于推进中小学劳动教育,落实劳动教育指导纲要,保障劳动教育时间,创新劳动教育载体,拓展劳动教育实践场所,推动劳动教育常态化有效开展,充 分发挥劳动教育综合育人作用。增强学生的责任意识,在实际生活中能自觉分担 家庭责任,具有较强的责任感。
第二框“师生交往”,主要帮助学生懂得“教学相长”的道理,强调师生之间上午双向互动,引导学生正确对待老师的引领和指导,全面认识师生交往的实质,努力建立和谐的师生关系,达到师生交往理想而美好的状态。第七课《亲情之爱》引导学生认识现代家庭的特点,培养学生在亲子之间积极沟通的能力和意识,学会表达爱,让家庭更美好成为一种发自内心的呼唤,与父母共创美好家庭。第一框“家的意味”,主要引导学生通过对我国传统文化“家训”“家规”的探究,了解中国家庭文化中“孝”的精神内涵,引导学生对家庭美德的深入思考,进而引导学生学会孝亲敬长。第二框“爱在家人间”,主要帮助学生认识到进入青春期的初中学生与家人之间产生冲突,既有自我独立意识增强与依赖心理之间的矛盾的原因,又有代际之间心智、学识、经历等方面的较大差异,掌握呵护亲情和解决冲突的方法。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。