对于离散型随机变量,可以由它的概率分布列确定与该随机变量相关事件的概率。但在实际问题中,有时我们更感兴趣的是随机变量的某些数字特征。例如,要了解某班同学在一次数学测验中的总体水平,很重要的是看平均分;要了解某班同学数学成绩是否“两极分化”则需要考察这个班数学成绩的方差。我们还常常希望直接通过数字来反映随机变量的某个方面的特征,最常用的有期望与方差.二、 探究新知探究1.甲乙两名射箭运动员射中目标靶的环数的分布列如下表所示:如何比较他们射箭水平的高低呢?环数X 7 8 9 10甲射中的概率 0.1 0.2 0.3 0.4乙射中的概率 0.15 0.25 0.4 0.2类似两组数据的比较,首先比较击中的平均环数,如果平均环数相等,再看稳定性.假设甲射箭n次,射中7环、8环、9环和10环的频率分别为:甲n次射箭射中的平均环数当n足够大时,频率稳定于概率,所以x稳定于7×0.1+8×0.2+9×0.3+10×0.4=9.即甲射中平均环数的稳定值(理论平均值)为9,这个平均值的大小可以反映甲运动员的射箭水平.同理,乙射中环数的平均值为7×0.15+8×0.25+9×0.4+10×0.2=8.65.
解析:当a0时,直线ax-by=1在x轴上的截距1/a0,在y轴上的截距-1/a>0.只有B满足.故选B.答案:B 3.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:设所求直线方程为x-2y+c=0,把点(1,0)代入可求得c=-1.所以所求直线方程为x-2y-1=0.故选A.4.已知两条直线y=ax-2和3x-(a+2)y+1=0互相平行,则a=________.答案:1或-3 解析:依题意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直线.(1)求实数m的范围;(2)若该直线的斜率k=1,求实数m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直线,则m2-3m+2与m-2不能同时为0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
课前小测1.思考辨析(1)若Sn为等差数列{an}的前n项和,则数列Snn也是等差数列.( )(2)若a1>0,d<0,则等差数列中所有正项之和最大.( )(3)在等差数列中,Sn是其前n项和,则有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在项数为2n+1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故选B项.]3.等差数列{an}中,S2=4,S4=9,则S6=________.15 [由S2,S4-S2,S6-S4成等差数列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知数列{an}的通项公式是an=2n-48,则Sn取得最小值时,n为________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有负项的和最小,即n=23或24.]二、典例解析例8.某校新建一个报告厅,要求容纳800个座位,报告厅共有20排座位,从第2排起后一排都比前一排多两个座位. 问第1排应安排多少个座位?分析:将第1排到第20排的座位数依次排成一列,构成数列{an} ,设数列{an} 的前n项和为S_n。
1.判断正误(正确的打“√”,错误的打“×”)(1)函数f (x)在区间(a,b)上都有f ′(x)<0,则函数f (x)在这个区间上单调递减. ( )(2)函数在某一点的导数越大,函数在该点处的切线越“陡峭”. ( )(3)函数在某个区间上变化越快,函数在这个区间上导数的绝对值越大.( )(4)判断函数单调性时,在区间内的个别点f ′(x)=0,不影响函数在此区间的单调性.( )[解析] (1)√ 函数f (x)在区间(a,b)上都有f ′(x)<0,所以函数f (x)在这个区间上单调递减,故正确.(2)× 切线的“陡峭”程度与|f ′(x)|的大小有关,故错误.(3)√ 函数在某个区间上变化的快慢,和函数导数的绝对值大小一致.(4)√ 若f ′(x)≥0(≤0),则函数f (x)在区间内单调递增(减),故f ′(x)=0不影响函数单调性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用导数判断下列函数的单调性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因为f(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函数在R上单调递增,如图(1)所示
一、 问题导学前面两节所讨论的变量,如人的身高、树的胸径、树的高度、短跑100m世界纪录和创纪录的时间等,都是数值变量,数值变量的取值为实数.其大小和运算都有实际含义.在现实生活中,人们经常需要回答一定范围内的两种现象或性质之间是否存在关联性或相互影响的问题.例如,就读不同学校是否对学生的成绩有影响,不同班级学生用于体育锻炼的时间是否有差别,吸烟是否会增加患肺癌的风险,等等,本节将要学习的独立性检验方法为我们提供了解决这类问题的方案。在讨论上述问题时,为了表述方便,我们经常会使用一种特殊的随机变量,以区别不同的现象或性质,这类随机变量称为分类变量.分类变量的取值可以用实数表示,例如,学生所在的班级可以用1,2,3等表示,男性、女性可以用1,0表示,等等.在很多时候,这些数值只作为编号使用,并没有通常的大小和运算意义,本节我们主要讨论取值于{0,1}的分类变量的关联性问题.
温故知新 1.离散型随机变量的定义可能取值为有限个或可以一一列举的随机变量,我们称为离散型随机变量.通常用大写英文字母表示随机变量,例如X,Y,Z;用小写英文字母表示随机变量的取值,例如x,y,z.随机变量的特点: 试验之前可以判断其可能出现的所有值,在试验之前不可能确定取何值;可以用数字表示2、随机变量的分类①离散型随机变量:X的取值可一、一列出;②连续型随机变量:X可以取某个区间内的一切值随机变量将随机事件的结果数量化.3、古典概型:①试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等。二、探究新知探究1.抛掷一枚骰子,所得的点数X有哪些值?取每个值的概率是多少? 因为X取值范围是{1,2,3,4,5,6}而且"P(X=m)"=1/6,m=1,2,3,4,5,6.因此X分布列如下表所示
1.对称性与首末两端“等距离”的两个二项式系数相等,即C_n^m=C_n^(n"-" m).2.增减性与最大值 当k(n+1)/2时,C_n^k随k的增加而减小.当n是偶数时,中间的一项C_n^(n/2)取得最大值;当n是奇数时,中间的两项C_n^((n"-" 1)/2) 与C_n^((n+1)/2)相等,且同时取得最大值.探究2.已知(1+x)^n =C_n^0+C_n^1 x+...〖+C〗_n^k x^k+...+C_n^n x^n 3.各二项式系数的和C_n^0+C_n^1+C_n^2+…+C_n^n=2n.令x=1 得(1+1)^n=C_n^0+C_n^1 +...+C_n^n=2^n所以,(a+b)^n 的展开式的各二项式系数之和为2^n1. 在(a+b)8的展开式中,二项式系数最大的项为 ,在(a+b)9的展开式中,二项式系数最大的项为 . 解析:因为(a+b)8的展开式中有9项,所以中间一项的二项式系数最大,该项为C_8^4a4b4=70a4b4.因为(a+b)9的展开式中有10项,所以中间两项的二项式系数最大,这两项分别为C_9^4a5b4=126a5b4,C_9^5a4b5=126a4b5.答案:1.70a4b4 126a5b4与126a4b5 2. A=C_n^0+C_n^2+C_n^4+…与B=C_n^1+C_n^3+C_n^5+…的大小关系是( )A.A>B B.A=B C.A<B D.不确定 解析:∵(1+1)n=C_n^0+C_n^1+C_n^2+…+C_n^n=2n,(1-1)n=C_n^0-C_n^1+C_n^2-…+(-1)nC_n^n=0,∴C_n^0+C_n^2+C_n^4+…=C_n^1+C_n^3+C_n^5+…=2n-1,即A=B.答案:B
1.确定研究对象,明确哪个是解释变量,哪个是响应变量;2.由经验确定非线性经验回归方程的模型;3.通过变换,将非线性经验回归模型转化为线性经验回归模型;4.按照公式计算经验回归方程中的参数,得到经验回归方程;5.消去新元,得到非线性经验回归方程;6.得出结果后分析残差图是否有异常 .跟踪训练1.一只药用昆虫的产卵数y与一定范围内的温度x有关,现收集了6组观测数据列于表中: 经计算得: 线性回归残差的平方和: ∑_(i=1)^6?〖(y_i-(y_i ) ?)〗^2=236,64,e^8.0605≈3167.其中 分别为观测数据中的温度和产卵数,i=1,2,3,4,5,6.(1)若用线性回归模型拟合,求y关于x的回归方程 (精确到0.1);(2)若用非线性回归模型拟合,求得y关于x回归方程为 且相关指数R2=0.9522. ①试与(1)中的线性回归模型相比较,用R2说明哪种模型的拟合效果更好 ?②用拟合效果好的模型预测温度为35℃时该种药用昆虫的产卵数.(结果取整数).
当前,我国高等教育进入了全面提高质量、推进内涵式发展的新时期,教育综合改革进入了攻坚期和深水区,这对我们的工作思路和工作模式提出了全新要求。学术活动是大学的基本活动,学术活动的开展离不开学术组织,校学术委员会作为校内最高学术机构,在学校的建设和发展中发挥着重要而独特的作用
一、把握时代背景,充分认识学术委员会换届的重要意义当前,我国高等教育进入了全面提高质量、推进内涵式发展的新时期,教育综合改革进入了攻坚期和深水区,这对我们的工作思路和工作模式提出了全新要求。学术活动是大学的基本活动,学术活动的开展离不开学术组织,校学术委员会作为校内最高学术机构,在学校的建设和发展中发挥着重要而独特的作用。
彰显创新大国形象。全球第一条360度回旋的雪车雪橇赛道、帮助运动员备战的风洞实验室、首都体育馆声光电技术打造的“最美的冰”......着眼科技创新,中国用更高的标准为冬奥皇冠镶上一颗颗璀璨的明珠。从冬奥会所有竞赛场馆完工,到京张高铁、京礼高速全线通车;从众多冰雪项目从无到有,到部分项目从有到强,一系列科技创新成果成为中国最闪亮的名片,向世界展现着中国科技的魅力。
展现文明友好形象。“有礼仪之大,故称夏;有服章之美,谓之华”,中国素来有礼仪之邦的美誉。作为东道主,冬奥会的成功举办离不开中国人民的参与和支持,北京冬奥会计划招募志愿者2.7万名,61.6万人积极报名,各省市包括海外青年学生占到了81%,他们将以质的服务诠释“奉献、友爱、互助、进步”的志愿者精神,以最饱满的热情展现中国文明友好形象。在冬奥会筹办期间,还广泛开展“最美微笑”文明引导、“冬奥有我”窗口文明服务等活动,通过全方位开展精神文明建设,营造了全社会的文明办奥氛围,让世界看到一个更加文明、包容、友爱的中国。
1、预防接种反应预防接种反应是指合格的疫苗在实施规范接种后造成受体者机体组织器官、功能损害,相关各方面无过错的不良反应2、预防接种反应事故预防接种反应事故是指由于疫苗质量不合格,或者由于在预防接种实施过程中违反预防接种工作规范、免疫程序,疫苗使用指导原则、接种方案等造成受种者机体、组织器官功能损害。
极端天气频发,防汛形势尤显严峻。近年来,受全球气候异常变化影响,极端天气事件明显增多,局部强降水呈多发、频发、重发态势。据省市气象部门分析,我市今年可能发生厄尔尼诺现象,其核心一条就是加剧气候异常,降水时空分布不均,局地暴雨致灾性强。一旦强降雨发生,内涝不可避免,发生流域性洪涝灾害的概率增加。我市极端天气灾害呈现强度增加、频度增多、影响增大的趋势,为我们敲醒了警钟。因此,我们一定要高度重视,时刻关注气候变化异常性引发的极端天气,对可能因此而引发的洪涝灾害要未雨绸缪,积极采取应对措施。一旦遇有极端天气,各乡镇、办事处防汛负责人一定要亲临一线,靠前指挥,全面应对,争取主动,确保防汛安全。
新的一年开启新的希望,新的日历承载新的梦想!虽然过去我们还有一些不足之处,在一些方面还有待提升,但是我坚信:只要我们上下一心,目标明确,我们一定会有新的突破!__年,我们要继续秉承“为客户提供360度无忧星级服务,让客户心动、情动、感动”的服务宗旨,为客户提供卓越的产品和服务,特别要重视细节化服务、个性化服务,对客户的意见以最快速度最圆满的解决;我们要继续加大对经销商的扶持力度,与广大合作伙伴心力合一,拓展全国市场;我们要建立一个崭新的网销平台,充分整合利用各种渠道资源,实现变革、开创商机;我们要改善现有的绩效考核制度,团队导入“学校+家庭+军队”的文化体系
近几年,我校以“校安工程”为契机,在汤校长的推动下,积极争资立项,使学校发展进入快车道,硬件建设发生了翻天覆地的变化。先后投资200万元新建学生食堂,投资504万元新建了教学楼,投资49万元新建了学校大门,投资了135万元修建了塑胶运动场,我们还将积极争取资金对学校进行绿化美化。现在,我们又抓住创建现代化学校的机遇,不断提升设备设施的现代化。可以预见,要不了多久,我校必将成为一所从人到物,从外部建筑到内部设施,从硬件到软件都初步实现现代化的学校。
12-16岁年龄段上,教育学和心理学把这一阶段称为“少年期”这段时间上,心理和生理变化比较迅速,身心各方面都比较矛盾。父母要高度重视对这一关键期和危险期的监护和把关。这一时期他们精力充沛,好奇心强,任何事总想试一试,但他们的愿望与自己的实际能力是有很大的矛盾的,他们的独立性增强了,总想摆脱对教师和家长的信赖,总认为自己不是孩子了。有事不愿和父母及师长交流,处于一种半封闭状态,和同龄人诉说又冒着曝光的危险,所以他们感觉没有朋友没有人可以理解他们,特别是处于青春期的女生这种会更加强烈。他们的情感很脆弱,最容易冲动,做事也很莽撞,后果意识能力差,前些日子《齐鲁晚报》上刊登一篇三个初中生因完不成作业,学习成绩差,被老师批评,家长训斥,联合出走,后在济南天桥下被人发现。便是一个典型的例子。
作为教师代表,我们在这里承诺,我们将恪守高校教师的职业道德,涵养大学教授的学者风范,爱国守法、爱岗敬业、关爱学生、教书育人、终身学习、献身学术。我们的教学一定会坚持育人为本、实践导向、能力为先,我们的科研一定会坚持学术品位,需求导向,应用为先。奇数有花难问种,异香闻气不知名。我们希望新同学们,大气、阳光、严谨、高贵。做人要大气,不要小气,做事要阳光,不要阴暗,做学问要严谨,不要抄袭,做学生要高贵,不要庸俗。我们期望新同学们,万事必求其所以,居心不可有然而;须使青春闲无度,莫教白首碌无为;书山有路勤为径,学海无涯乐作舟;漫步校园无丑行,行走社会有教养。
二十年前,我们还是~~学校的学子,在母校的养育下,在老师们的辛勤栽培中,我们一步步的成长为一名名出色的毕业生。回顾那三年的时间,那真是一段既美好又短暂的时光,那是我们共同生活的时光。比起这二十年来,这三年的长度也许遥不可及,但是无论我们在这二十年里经历了多少,这三年,依旧是我们最为美好的记忆!
首先,我们用心工作。在日常工作中用心努力地做好每件事,争取把问题想周到,尽量使自己能做到事半功倍的效果。在财务工作中我始终以提高工作效率和工作质量为目标,力争做到总公司和分公司财务制度统一,积极主动地了解各分公司财务工作中出现的问题,及时上报,及时解决。使得各分公司人员按照公司的制度和标准完成每项工作,熟练掌握工作流程,坚持按财务制度办事,保持头脑清醒,及时掌握各公司签订合同和收付工程款项等情况。在工作中发现问题,解决问题,采纳大家提出的合理化建议。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。