材料一 汉代王充説:“商鞅相孝公,内秦升帝业。”(1)根据材料一,回答商鞅変法对秦国的作用。(1分)材料二 19世紀50~70年代俄国机器制造业統計表据统计,1860~1890年,俄国的生铁产量增加了2倍,钢产量和棉纺织业的产值都增加了3倍,而煤炭产量的增加则超过了19倍。在此期间,俄国的整个工业产量增长了6倍。(2)请概括材料二中的历史信息。(1分)哪次改革推动了以上现象的出现? (1分)材料三 1933年整个资本主义世界工业生产下降40%……美、德、法、英大量企业破产,资本主义世界失业工人达到3000多万,几百万小农破产,无业人口颠沛流离。——摘编自 《世界历史》九年级下册(3)材料三反映了资本主义世界哪一重大事件? (1分)针对这一一事件,美国采取了什么应对政策? (1分)(4)通过以上问题的探究,你能得到哪些启示? (1分)
第二次世界大战终于落下了帷幕,但人们所希望的真正和平并未降临。美国、苏联这对战时的盟友很快变成了“冷战“的对手。”“冷战”为什么会爆发呢?史学家们从以下四个不同角度进行了分析:[角度一]美国当时拥有最强大的经济与军事实力,确立了称霸世界的全球战略,日益把苏联看作其称霸全球的主要障碍,企图遏制苏联。[角度二] 苏联为反法西斯战争胜利做出了重大贡献,国际威望大大提高,并且军事力量大大加强,能与美国抗衡。战后,苏联把确保东西部边界安全作为国家的首要利益,在自己的周边建立“安全带”,努力扩大自己在世界上的影响,推行大国沙文主义(即征服和奴役其他民族的思想和主张。)
公元前8世纪,罗马城逐步建立起来。公元前509年,罗马建立了共和国。之后,逐步征服了意大利半岛。公元前49年,凯撒夺取政权。公元前27年,屋大维开始独揽国家大权,罗马共和国被罗马帝国取代。到了2世纪,罗马帝国成为地跨欧亚非三大洲的帝国。1世纪,基督教产生于巴勒斯坦一带。在西欧长期动乱的过程中,基督教会乘机扩大势力和影响,教皇和教会不仅是西欧最大的土地所有者,还是西欧封建制度的精神支柱。3世纪起,罗马帝国爆发了全面危机。395年,罗马帝国分裂为东、西两部分。476年,西罗马帝国被日耳曼人灭亡,西欧开始进入封建社会。6世纪,东罗马帝国四处征伐,帝国日益衰落。1453年,君士坦丁堡被土军攻陷,东罗马帝国灭亡。 ——摘编自人教版《世界历史?9年级上册》
材料一:“华盛顿,异人也。起事勇于胜广,割据雄于曹刘,既已提三尺剑,开疆万里,乃不僭位号、不传子孙,而创为推举之法,几于天下为公,骎骎乎三代之遗意。” ——摘自华盛顿纪念塔内的碑文材料二:1862年9月,林肯颁布了《解放黑人奴隶宣言》,规定从1863年元旦起,废除叛乱诸州的奴隶制,并允许奴隶作为自由人参加北方军队。 ——摘自《世界历史》九年级上册
材料 当代国学大师南怀瑾说:中国文化历史,在秦汉以前,主要是儒、墨、道三家,笼罩了全部的文化思想。到唐宋以后,换了一家,成为儒释道三家,这三家又笼罩着中国文化思想。佛学像百货店,有钱有闲,可去逛逛,逛了买东西也可,根本不逛也可,但社会需要它;道家像药店,它包括了兵家、纵横家的思想,乃至天文、地理、医药,一个国家、民族生病,非去这个药店不可;儒家的孔孟思想像粮店,是天天要吃的,要深切了解中国文化历史的演变、将来怎么办,就要研究四书。
材料一 一九一七年的俄国革命,是二十世纪中世界革命的先声。——《庶民的胜利》材料二美国独立战争期间,路易(法国国王路易十六)援助美国并非他热爱民主起义,而是由于他畏惧且憎恨英国。他帮助美国,支持自由事业,可这却成为压倒法国的最后一块巨石,法国已彻底倒闭了。 ——海斯·穆恩·韦兰《全球通史》(1)材料一中的“俄国革命”指的是哪一事件?(1 分)如何理解“俄国革命是二十世纪中世界革命的先声”?(1 分)(2)材料二中,为什么说美国的独立战争是一次“民主起义”?(1 分)(3)结合法国大革命的有关知识,指出法国国内存在的压倒它自身的一块“巨石”。(1 分)(4)结合所学知识,请从政治和经济两个角度,分析18 世纪后半期英国被法国“畏惧且憎恨”的原因。(2 分)
38.各国经济发展并非一帆风顺。阅读下列材料,结合所学知识,回答下列相关问题。材料一:1992年,一位创立了中国特色社会主义理论的世纪伟人,针对当时有些人担心实行改革开放会使中国“走上资本主义道路”的困惑,发表了重要谈话。谈话中他强调,“发展才是硬道理”、“改革开放的胆子要大一些”、“市场经济不等于资本主义,社会主义也有市场”,明确提出了判断是非的标准。——川教版八年级下册材料二:在某种意义上,有人说,他挽救了市场经济。市场经济不是说没有毛病,出了一些毛病。在20世纪30年代的时候,他引进了一些新政,然后使市场经济又回到一个比较健康发展的轨道……开创了市场经济的新模式。在这种模式中,市场的作用和政府的作用同时得以发挥。——《大国崛起》解说词(1)材料一中,“世纪伟人”发表的“重要谈话”被称作什么?(1分)“中国特色社会主义理论”在祖国统一大业方面出现了什么创新制度?(1分)哪次会议揭开了“改革开放”的序幕?(1分)(2)材料二中的“他”是谁?(1分)“他”开创的“市场经济新模式”为资本主义国家的发展提供了怎样的范例?(1分)
三、夯实责任◆一讲完成工作的时限。◆二讲工作任务要层层分解,落实责任。◆三讲工作中要齐心协力,上下联动,相互配合。◆四讲工作要分步推进,稳步实施。◆五讲要注意解决工作中出现的问题,要创造性地开展工作。
(一)畜禽方面:1、xx市一季度出栏生猪20.02万头,存栏36.76万头,能繁母猪3.45万头,同比增长分别为29.24%、12.04%、0.88%。2、2023年3月3日至8日,畜水中心组织人员对全市畜禽养殖场进行抽查,共抽查畜禽养殖场59个,其中生猪养殖场52个,家禽养殖场5个,消纳池2个,发现问题4个并给出整改建议,已移交到益阳市生态环境局(xx分局)处理。同时下发《关于开展畜禽养殖污染防治巡查工作的通知》,要求各镇、街道、中心建立畜禽养殖污染防治巡查长效机制,定期组织人员对辖区内的畜禽养殖场进行巡查,发现问题及时整改。3、完成动物春节疫苗接种。集中免疫猪O型口蹄疫苗30万毫升,牛羊口蹄疫疫苗。0.4万毫升,高致病性禽流感疫苗140万毫升。4、我市是农业部环洞庭湖禽流感监测县和家畜血吸虫的纵向观测点,配合采集和监测禽流感样品380份,监测家畜粪样104份。5、兽医实验升级改造已经完成,共投入资金120万元,我市已具备非洲猪瘟、禽流感病原检测能力。
(二)紧盯人员密集场所,坚决遏制火灾易发态势。深刻汲取北京丰台长峰医院、浙江金华企业厂房火灾事故教训,坚持“哪类场所火灾多发就整治哪类场所、什么问题突出就整治什么问题”。继续做好火灾防控工作,以防范火灾、爆炸和防止踩踏为重点,紧盯水利办公区域、职工食堂、施工区域、集体宿舍、水利工程管理用房等场所,集中排查整治违规电气焊、违规动火、违规使用易燃可燃材料装修装饰、违章动火作业、锁闭安全出口、占用堵塞消防通道、消防设施损坏缺失等方面存在的重大隐患。(三)做好安全度汛工作,全面整治各类安全隐患。加强地质灾害防治,受到山体滑坡、垮塌和泥石流威胁的施工工地、生产厂房和居民区,重点加强监测监控,采取针对性防范措施。强化建设施工项目安全检查,遇雷雨、大风等极端天气时,按规定立即停止室外高空作业,落实塔吊等大型起重机械抗风防滑措施。切实做好汛期安全隐患排查治理工作,确保汛期安全生产形势稳定。
二、 突出亮点 弋阳教育人的坦诚与热情。针对本次考察,弋阳县教体局按照项目负责的方式成立项目部,所有欲参加展示的学校,通过自主申报、项目组考察最后确定展示学校。各学校按照方华局长“把真实的我们,展示给考察的客人” 的要求,热情地为我们呈现了原生态的弋阳教育。令所有考察人员大呼“感谢!” 弋阳教育人的务实与敬业。不论是教体局领导,还是一般教师;不论是刚刚入职的“嫩芽”,还是面临退休的“老将”。对工作的务实敬业都让考察人员感到“震撼”!
一、 考察概况 14日赴江西弋阳,途中安排考察侧重点及分工。弋阳教育局负责接待的项目组及部分家校合作促进委员会成员晚上负责接站及安排食宿、下发几天的活动方案。15日至17日分初中、小学两个组分别赴弋阳的偏远乡村学校和县直学校考察,分别进行交流反馈,集中参加逸夫教育集团的“家校夜话”和“第九届叠山论坛”。我的具体活动情况是: 15日,上午随初中组到最北部偏远的漕溪中学(距县城42公里)参观校园听取学校简单介绍、听徐珍珍老师的语文主题学习展示课《读懂身边的爱》(同时开四节语文主题学习展示课)、参与《做个追梦的语文人——漕溪中学语文主题学习评课展示会》、听取了汪冬祥老师(54岁语文教研组长)的《且行且思 共同探索》的汇报、汪水辉校长《多维互助共同成长》的学校报告。 中午在漕溪中学品尝有家长志愿者就餐后赶到三县岭中小学观摩并分别听取两位校长的介绍。
《奇偶性》内容选自人教版A版第一册第三章第三节第二课时;函数奇偶性是研究函数的一个重要策略,因此奇偶性成为函数的重要性质之一,它的研究也为今后指对函数、幂函数、三角函数的性质等后续内容的深入起着铺垫的作用.课程目标1、理解函数的奇偶性及其几何意义;2、学会运用函数图象理解和研究函数的性质;3、学会判断函数的奇偶性.数学学科素养1.数学抽象:用数学语言表示函数奇偶性;2.逻辑推理:证明函数奇偶性;3.数学运算:运用函数奇偶性求参数;4.数据分析:利用图像求奇偶函数;5.数学建模:在具体问题情境中,运用数形结合思想,利用奇偶性解决实际问题。重点:函数奇偶性概念的形成和函数奇偶性的判断;难点:函数奇偶性概念的探究与理解.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
一、复习回顾,温故知新1. 任意角三角函数的定义【答案】设角 它的终边与单位圆交于点 。那么(1) (2) 2.诱导公式一 ,其中, 。终边相同的角的同一三角函数值相等二、探索新知思考1:(1).终边相同的角的同一三角函数值有什么关系?【答案】相等(2).角 -α与α的终边 有何位置关系?【答案】终边关于x轴对称(3).角 与α的终边 有何位置关系?【答案】终边关于y轴对称(4).角 与α的终边 有何位置关系?【答案】终边关于原点对称思考2: 已知任意角α的终边与单位圆相交于点P(x, y),请同学们思考回答点P关于原点、x轴、y轴对称的三个点的坐标是什么?【答案】点P(x, y)关于原点对称点P1(-x, -y)点P(x, y)关于x轴对称点P2(x, -y) 点P(x, y)关于y轴对称点P3(-x, y)
幂函数是在继一次函数、反比例函数、二次函数之后,又学习了单调性、最值、奇偶性的基础上,借助实例,总结出幂函数的概念,再借助图像研究幂函数的性质.课程目标1、理解幂函数的概念,会画幂函数y=x,y=x2,y=x3,y=x-1,y=x 的图象;2、结合这几个幂函数的图象,理解幂函数图象的变化情况和性质;3、通过观察、总结幂函数的性质,培养学生概括抽象和识图能力.数学学科素养1.数学抽象:用数学语言表示函数幂函数;2.逻辑推理:常见幂函数的性质;3.数学运算:利用幂函数的概念求参数;4.数据分析:比较幂函数大小;5.数学建模:在具体问题情境中,运用数形结合思想,利用幂函数性质、图像特点解决实际问题。重点:常见幂函数的概念、图象和性质;难点:幂函数的单调性及比较两个幂值的大小.
本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.3.2节《对数的运算》。其核心是弄清楚对数的定义,掌握对数的运算性质,理解它的关键就是通过实例使学生认识对数式与指数式的关系,分析得出对数的概念及对数式与指数式的 互化,通过实例推导对数的运算性质。由于它还与后续很多内容,比如对数函数及其性质,这也是高考必考内容之一,所以在本学科有着很重要的地位。解决重点的关键是抓住对数的概念、并让学生掌握对数式与指数式的互化;通过实例推导对数的运算性质,让学生准确地运用对数运算性质进行运算,学会运用换底公式。培养学生数学运算、数学抽象、逻辑推理和数学建模的核心素养。1、理解对数的概念,能进行指数式与对数式的互化;2、了解常用对数与自然对数的意义,理解对数恒等式并能运用于有关对数计算。
学生已经学习了指数运算性质,有了这些知识作储备,教科书通过利用指数运算性质,推导对数的运算性质,再学习利用对数的运算性质化简求值。课程目标1、通过具体实例引入,推导对数的运算性质;2、熟练掌握对数的运算性质,学会化简,计算.数学学科素养1.数学抽象:对数的运算性质;2.逻辑推理:换底公式的推导;3.数学运算:对数运算性质的应用;4.数学建模:在熟悉的实际情景中,模仿学过的数学建模过程解决问题.重点:对数的运算性质,换底公式,对数恒等式及其应用;难点:正确使用对数的运算性质和换底公式.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。一、 情景导入回顾指数性质:(1)aras=ar+s(a>0,r,s∈Q).(2)(ar)s= (a>0,r,s∈Q).(3)(ab)r= (a>0,b>0,r∈Q).那么对数有哪些性质?如 要求:让学生自由发言,教师不做判断。而是引导学生进一步观察.研探.
对数与指数是相通的,本节在已经学习指数的基础上通过实例总结归纳对数的概念,通过对数的性质和恒等式解决一些与对数有关的问题.课程目标1、理解对数的概念以及对数的基本性质;2、掌握对数式与指数式的相互转化;数学学科素养1.数学抽象:对数的概念;2.逻辑推理:推导对数性质;3.数学运算:用对数的基本性质与对数恒等式求值;4.数学建模:通过与指数式的比较,引出对数定义与性质.重点:对数式与指数式的互化以及对数性质;难点:推导对数性质.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。一、 情景导入已知中国的人口数y和年头x满足关系 中,若知年头数则能算出相应的人口总数。反之,如果问“哪一年的人口数可达到18亿,20亿,30亿......”,该如何解决?要求:让学生自由发言,教师不做判断。而是引导学生进一步观察.研探.
函数在高中数学中占有很重要的比重,因而作为函数的第一节内容,主要从三个实例出发,引出函数的概念.从而就函数概念的分析判断函数,求定义域和函数值,再结合三要素判断函数相等.课程目标1.理解函数的定义、函数的定义域、值域及对应法则。2.掌握判定函数和函数相等的方法。3.学会求函数的定义域与函数值。数学学科素养1.数学抽象:通过教材中四个实例总结函数定义;2.逻辑推理:相等函数的判断;3.数学运算:求函数定义域和求函数值;4.数据分析:运用分离常数法和换元法求值域;5.数学建模:通过从实际问题中抽象概括出函数概念的活动,培养学生从“特殊到一般”的分析问题的能力,提高学生的抽象概括能力。重点:函数的概念,函数的三要素。难点:函数概念及符号y=f(x)的理解。
例7 用描述法表示抛物线y=x2+1上的点构成的集合.【答案】见解析 【解析】 抛物线y=x2+1上的点构成的集合可表示为:{(x,y)|y=x2+1}.变式1.[变条件,变设问]本题中点的集合若改为“{x|y=x2+1}”,则集合中的元素是什么?【答案】见解析 【解析】集合{x|y=x2+1}的代表元素是x,且x∈R,所以{x|y=x2+1}中的元素是全体实数.变式2.[变条件,变设问]本题中点的集合若改为“{y|y=x2+1}”,则集合中的元素是什么?【答案】见解析 【解析】集合{ y| y=x2+1}的代表元素是y,满足条件y=x2+1的y的取值范围是y≥1,所以{ y| y=x2+1}={ y| y≥1},所以集合中的元素是大于等于1的全体实数.解题技巧(认识集合含义的2个步骤)一看代表元素,是数集还是点集,二看元素满足什么条件即有什么公共特性。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。