以下过程都要必须都要完成,否则合同无效,由于盖章问题导致结算拖延、无法结算问题由乙方自己承担,合同未归档统一不做结算。两方合同一式3份,三方合同一式4份,先由我方公司寄出3(4)份,乙方盖完公章将3(4)份寄回,我方公司盖完章,会将合同寄回乙方。1、提供营业执照复印件并加盖公章(一份),开户许可证复印件并加盖公章(一份)。合同签署人(经纪人)身份证复印件(一份)盖章并按手印。2、合同内容盖章。(1)签署页,手写签署姓名和日期!!
甲方因 事宜,为维护自身的合法权益,特聘请乙方提供专项法律服务,并代为办理该项工作中的有关法律事务。现依据我国《合同法》、《律师法》等相关法律法规,经双方协商一致签定本合同,以资各方诚信履行。第一条 甲方委托乙方提供如下法律服务:第二条 乙方的义务1、乙方委派执业律师为甲方办理合同第一条所列服务事项;2、乙方律师应当勤勉、尽责,尽最大努力维护甲方的合法权益;3、乙方律师应当在取得甲方提供的文件资料后及时完成服务,并应甲方要求通报工作进展情况;4、乙方律师在本合同期内,对涉及甲方的对抗性案件,不得担任与甲方具有法律上利益冲突的另一方的法律顾问或者代理人;5、乙方律师对其获知的甲方个人隐私、商业秘密负有保密义务。 第三条 甲方的义务 1、甲方应当真实、完整、及时地向乙方提供与本次委托事项有关的各种情况、文件、资料;2、甲方应当为乙方律师办理服务事项提出明确、合法合理的要求;3、甲方应当按时、足额向乙方支付约定的律师费;
一、服务范围乙方为甲方的 有限公司设计和指导实施人力资源管理系统,具体包括以下内容:1.1人力资源管理现状的调研分析1.1.1通过标准问卷、现场访谈、资料查阅等方式对甲方进行全方位人力资源管理现状的调研诊断。1.1.2通过系统分析,形成详细的人力资源管理现状调研分析报告。1.2组织职位体系1.2.1梳理并编制的组织结构。1.2.2设计符合甲方发展战略要求的组织结构。1.2.3编制新组织结构的部门职能、关键岗位的岗位说明书、关键岗位的职位发展矩阵。1.2.4对新组织结构的各岗位进行人员定编。1.3绩效管理体系1.3.1编制绩效管理手册。1.3.2编制各部门及关键岗位的绩效考核指标,形成《绩效指标辞典》。1.4薪酬福利体系1.4.1编制薪酬福利管理手册。1.4.2选择岗位价值评估模型,完成核心岗位的价值评估。1.4.3设计各职族职等的宽带薪酬体系。1.4.4对各岗位人员的薪酬数据进行重新定位。1.5建立员工培养和发展体系1.5.1设计满足甲方发展战略的员工素质模型。1.5.2设计持续不断满足员工能力素质提升的培训体系。
欣喜的未来我充满信心地告诉大家,我们的未来会更加美好,就像电影里的大团圆一样。我们将继续进行立项攻坚,不断改进和优化,为客户提供更棒的产品和服务。我们就是超级英雄,为美好的未来而战立项攻坚总结汇报(简洁风格)项目背景本次立项攻坚是为了解决公司面临的市场挑战。我司历经市场变化,产品和服务需要快速调整以提高竞争力。此次立项攻坚旨在优化产品质量、加快迭代速度及提高效率。攻坚方案1评估客户需求,制定产品开发计划。2精简决策流程,提高项目管理效率。3设立跨部门协作小组,优化资源配置。攻坚成果1.客户满意度提高,产品质量得到保障。2产品迭代周期缩短30%,市场占有率提升。3流程优化使生产效率提高20%,资源利用率提高。经验总结1准确了解客户需求是关键。2简化流程能提升效率,加快决策节奏。3.跨部门协作优化资源配置。展望未来我们将持续进行立项攻坚,优化改进产品和服务,提高市场竞争力。
一、 大学生网络购物基本情况 网上购物,就是通过互联网检索商品信息,并通过电子订购单发出购物请求,然后填上私人支票帐号或信用卡的号码,厂商通过邮购的方式发货,或是通过快递公司送货上门。国内的网上购物,一般付款方式是款到发货(直接银行转帐,在线汇款)。担保交易(淘宝支付宝,百度百付宝,腾讯财付通等的担保交易),货到付款等。
第一天,人员分为三组进行游戏比拼,每一个游戏都需要脑力、体力以及团队合作,尤其是最后一项游戏—要求团队七名成员在八分钟时间内完成五项游戏项目。当时的情形依旧历历在目,犹记得在练习时,我们队在让排球在鼓面上掂六次这一项一直未能成功。在正式比赛时,我们吸取前一队的经验但是依旧未能成功,后来找到了适合自己队的一种方法终于克服了这一项目,在八分钟内完成了所有项目。 第二天,全体人员徒步穿越大峡谷。非常触动我的是,前半路程并不好走,需要踩着石头通过一片又一片的有水区域。穿凉鞋的同事便义无反顾地下到水中,帮忙搀扶着其他人员通过。此外,在危险难过的路段总会有同事伸出援手。同时,虽然天气炎热,但是无一人中途退出。
团建活动所教会我们的不仅仅是在游戏中。今年公司迎来了大发展,成立了综合设计咨询分公司。对于我们综合设计咨询分公司来说是发展的重要时期,需要所有员工团结起来,凝心聚力,推动公司的发展。有竞争才有动力,在竞争的压力下,会有更大的动力去做好每一件事情,去激发更大的潜能,最大限度地发挥自己的执行力。同时,在工作中,要借鉴他人的经验,学会创新。不管遇到什么样的挑战,要迎难而上,坚持到底,挑战终将变为我们前进路上的垫脚石。最后,无论在生活还是工作中,同事之间要互帮互助,在和谐的氛围下共创综合设计咨询分公司美好的未来。
2020新年伊始,一场疫情突如其来,来势汹汹,令人始料不及。一场与新型冠状病毒肺炎的人民战争打响;为了对抗疫情,武汉封城,全国各地的高速多处都被封。然而,一方有难,八方支援,全国各地的援助接踵而至,各地的捐款活动如火如荼地展开,各地的医疗力量从四面八方涌向武汉——疫情最危险的地方,与疫情相争,与死神相抗。更有八十三岁高龄的钟南山教授勇赴医疗前线。在其中,有一种情怀,叫钟南山精神;有一种崇高,叫生命守护;有一种宗旨,叫救治患者;有一种前行,叫疫情中的逆行者;有一座高山,叫雷神山火神山。除此以外,各省也启动了重大突发公共卫生事件一级响应,在人类共同的危难中,任何的偏见、分歧都烟消云散,日本送来援助物资,希望中国早日控制住疫情。
拓展训练一下子使我对前途的挑战欲望猛然增强。在工作中,业务的拓展往往无法预见其结果,使自己裹足不前。但拓展训练使自己猛然醒悟到在今后的工作中,不要因为不可认知而畏惧,不要因从来未尝试过而轻言放弃。一个人对自身的认识往往是有保留的,对自己的潜能认识是模糊的、低估的。拓展训练使自己更清晰地认识到自己身上潜伏的能量,增强了自己克服困难,迎接挑战的信心与决心。通过拓展训练,我重新认识到了自身的潜能,也将把这种潜力发挥到以后的工作中。
学生素质教育,加强和改进青年学生思想政治工作,引导学生健康成长成才的重要举措,作为培养和提高学生实践、创新和创业能力的重要途径,一直来深受学校的高度重视。社会实践活动一直被视为高校培养德、智、体、美、劳全面发展的跨世纪优秀人才的重要途径。寒假期间社会实践活动是学校教育向课堂外的一种延伸,也是推进素质教育进程的重要手段。它有助于当代大学生接触社会,了解社会。同时,实践也是大学生学习知识、锻炼才干的有效途径,更是大学生服务社会、回报社会的一种良好形式。多年来,社会实践活动已在我校蔚然成风。
1.各科教师对实验教学必须制订总的和分学期的教学计划。并于上学期末或本学期初交教导处和实验室各一份。计划应分年级列出实验课题、实验类型、实验时间等。 2.实验室应根据实验各科教学大纲、教材和任课教师的实验教学计划,制订本学期实验室工作计划。计划应包括实验室使用安排,仪器和实验材料的购置及仪器的检查和维护等。 (二)实验教学的组织与实施 1.教师按照实验教学计划认真备课,写好教案,填写《实验通知单》,按规定的时间交实验室并检查所用仪器和器材的准备情况,试作实验,做到“心中有数”。 2.教师要指导学生做好课前预习,明确实验目的,掌握实验原理,并划分实验小组,强调实验纪律,重视安全操作教育。 3.实验室按照《实验通知单》积极准备实验,使需要的仪器处于完好状态,备足药品和材料,检查通风、电源、水源及其它设备。
《奇偶性》内容选自人教版A版第一册第三章第三节第二课时;函数奇偶性是研究函数的一个重要策略,因此奇偶性成为函数的重要性质之一,它的研究也为今后指对函数、幂函数、三角函数的性质等后续内容的深入起着铺垫的作用.课程目标1、理解函数的奇偶性及其几何意义;2、学会运用函数图象理解和研究函数的性质;3、学会判断函数的奇偶性.数学学科素养1.数学抽象:用数学语言表示函数奇偶性;2.逻辑推理:证明函数奇偶性;3.数学运算:运用函数奇偶性求参数;4.数据分析:利用图像求奇偶函数;5.数学建模:在具体问题情境中,运用数形结合思想,利用奇偶性解决实际问题。重点:函数奇偶性概念的形成和函数奇偶性的判断;难点:函数奇偶性概念的探究与理解.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
一、复习回顾,温故知新1. 任意角三角函数的定义【答案】设角 它的终边与单位圆交于点 。那么(1) (2) 2.诱导公式一 ,其中, 。终边相同的角的同一三角函数值相等二、探索新知思考1:(1).终边相同的角的同一三角函数值有什么关系?【答案】相等(2).角 -α与α的终边 有何位置关系?【答案】终边关于x轴对称(3).角 与α的终边 有何位置关系?【答案】终边关于y轴对称(4).角 与α的终边 有何位置关系?【答案】终边关于原点对称思考2: 已知任意角α的终边与单位圆相交于点P(x, y),请同学们思考回答点P关于原点、x轴、y轴对称的三个点的坐标是什么?【答案】点P(x, y)关于原点对称点P1(-x, -y)点P(x, y)关于x轴对称点P2(x, -y) 点P(x, y)关于y轴对称点P3(-x, y)
幂函数是在继一次函数、反比例函数、二次函数之后,又学习了单调性、最值、奇偶性的基础上,借助实例,总结出幂函数的概念,再借助图像研究幂函数的性质.课程目标1、理解幂函数的概念,会画幂函数y=x,y=x2,y=x3,y=x-1,y=x 的图象;2、结合这几个幂函数的图象,理解幂函数图象的变化情况和性质;3、通过观察、总结幂函数的性质,培养学生概括抽象和识图能力.数学学科素养1.数学抽象:用数学语言表示函数幂函数;2.逻辑推理:常见幂函数的性质;3.数学运算:利用幂函数的概念求参数;4.数据分析:比较幂函数大小;5.数学建模:在具体问题情境中,运用数形结合思想,利用幂函数性质、图像特点解决实际问题。重点:常见幂函数的概念、图象和性质;难点:幂函数的单调性及比较两个幂值的大小.
本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.3.2节《对数的运算》。其核心是弄清楚对数的定义,掌握对数的运算性质,理解它的关键就是通过实例使学生认识对数式与指数式的关系,分析得出对数的概念及对数式与指数式的 互化,通过实例推导对数的运算性质。由于它还与后续很多内容,比如对数函数及其性质,这也是高考必考内容之一,所以在本学科有着很重要的地位。解决重点的关键是抓住对数的概念、并让学生掌握对数式与指数式的互化;通过实例推导对数的运算性质,让学生准确地运用对数运算性质进行运算,学会运用换底公式。培养学生数学运算、数学抽象、逻辑推理和数学建模的核心素养。1、理解对数的概念,能进行指数式与对数式的互化;2、了解常用对数与自然对数的意义,理解对数恒等式并能运用于有关对数计算。
学生已经学习了指数运算性质,有了这些知识作储备,教科书通过利用指数运算性质,推导对数的运算性质,再学习利用对数的运算性质化简求值。课程目标1、通过具体实例引入,推导对数的运算性质;2、熟练掌握对数的运算性质,学会化简,计算.数学学科素养1.数学抽象:对数的运算性质;2.逻辑推理:换底公式的推导;3.数学运算:对数运算性质的应用;4.数学建模:在熟悉的实际情景中,模仿学过的数学建模过程解决问题.重点:对数的运算性质,换底公式,对数恒等式及其应用;难点:正确使用对数的运算性质和换底公式.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。一、 情景导入回顾指数性质:(1)aras=ar+s(a>0,r,s∈Q).(2)(ar)s= (a>0,r,s∈Q).(3)(ab)r= (a>0,b>0,r∈Q).那么对数有哪些性质?如 要求:让学生自由发言,教师不做判断。而是引导学生进一步观察.研探.
对数与指数是相通的,本节在已经学习指数的基础上通过实例总结归纳对数的概念,通过对数的性质和恒等式解决一些与对数有关的问题.课程目标1、理解对数的概念以及对数的基本性质;2、掌握对数式与指数式的相互转化;数学学科素养1.数学抽象:对数的概念;2.逻辑推理:推导对数性质;3.数学运算:用对数的基本性质与对数恒等式求值;4.数学建模:通过与指数式的比较,引出对数定义与性质.重点:对数式与指数式的互化以及对数性质;难点:推导对数性质.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。一、 情景导入已知中国的人口数y和年头x满足关系 中,若知年头数则能算出相应的人口总数。反之,如果问“哪一年的人口数可达到18亿,20亿,30亿......”,该如何解决?要求:让学生自由发言,教师不做判断。而是引导学生进一步观察.研探.
函数在高中数学中占有很重要的比重,因而作为函数的第一节内容,主要从三个实例出发,引出函数的概念.从而就函数概念的分析判断函数,求定义域和函数值,再结合三要素判断函数相等.课程目标1.理解函数的定义、函数的定义域、值域及对应法则。2.掌握判定函数和函数相等的方法。3.学会求函数的定义域与函数值。数学学科素养1.数学抽象:通过教材中四个实例总结函数定义;2.逻辑推理:相等函数的判断;3.数学运算:求函数定义域和求函数值;4.数据分析:运用分离常数法和换元法求值域;5.数学建模:通过从实际问题中抽象概括出函数概念的活动,培养学生从“特殊到一般”的分析问题的能力,提高学生的抽象概括能力。重点:函数的概念,函数的三要素。难点:函数概念及符号y=f(x)的理解。
《基本不等式》在人教A版高中数学第一册第二章第2节,本节课的内容是基本不等式的形式以及推导和证明过程。本章一直在研究不等式的相关问题,对于本节课的知识点有了很好的铺垫作用。同时本节课的内容也是之后基本不等式应用的必要基础。课程目标1.掌握基本不等式的形式以及推导过程,会用基本不等式解决简单问题。2.经历基本不等式的推导与证明过程,提升逻辑推理能力。3.在猜想论证的过程中,体会数学的严谨性。数学学科素养1.数学抽象:基本不等式的形式以及推导过程;2.逻辑推理:基本不等式的证明;3.数学运算:利用基本不等式求最值;4.数据分析:利用基本不等式解决实际问题;5.数学建模:利用函数的思想和基本不等式解决实际问题,提升学生的逻辑推理能力。重点:基本不等式的形成以及推导过程和利用基本不等式求最值;难点:基本不等式的推导以及证明过程.
例7 用描述法表示抛物线y=x2+1上的点构成的集合.【答案】见解析 【解析】 抛物线y=x2+1上的点构成的集合可表示为:{(x,y)|y=x2+1}.变式1.[变条件,变设问]本题中点的集合若改为“{x|y=x2+1}”,则集合中的元素是什么?【答案】见解析 【解析】集合{x|y=x2+1}的代表元素是x,且x∈R,所以{x|y=x2+1}中的元素是全体实数.变式2.[变条件,变设问]本题中点的集合若改为“{y|y=x2+1}”,则集合中的元素是什么?【答案】见解析 【解析】集合{ y| y=x2+1}的代表元素是y,满足条件y=x2+1的y的取值范围是y≥1,所以{ y| y=x2+1}={ y| y≥1},所以集合中的元素是大于等于1的全体实数.解题技巧(认识集合含义的2个步骤)一看代表元素,是数集还是点集,二看元素满足什么条件即有什么公共特性。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。